\(\frac{a}{5}\)=\(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

1) 

a) Ta có: a.b = -3.5

=> a.b = -15

Vậy tìm 2 số sao cho tích = -15 là được rồi

b) Ta có: (a-1)(b+3) = -3.7

=> (a-1)(b+3) = -21

Vậy giờ giải như bài tìm x,y (ở đây thay là a,b)

23 tháng 1 2017

a) \(\frac{a}{5}=\frac{-3}{b}\Leftrightarrow ab=5.-3=-15\)

\(ab\)\(-15\)\(-15\)\(-15\)\(-15\)
\(a\)\(-1\)\(-15\)\(-3\)\(-5\)
\(b\)\(15\)\(1\)\(5\)\(3\)

Hoặc ngược lại

b)\(\frac{a-1}{7}=\frac{-3}{b+3}\Leftrightarrow\left(a-1\right)\left(b+3\right)=-21\)


 

\(ab\)\(-21\)\(-21\)\(-21\)\(-21\)
\(a-1\)\(-1\)\(21\)\(-3\)\(3\)
\(b+3\)\(21\)\(-1\)\(7\)\(-7\)
\(a\)\(0\)\(22\)\(-2\)\(4\)
\(b\)\(18\)\(-4\)\(4\)\(-10\)

Hoặc ngược lại

c)\(\frac{a}{b}=\frac{b}{c}=\frac{a}{c}\Leftrightarrow a.c^2=b^2.a\)

\(\Leftrightarrow c^2=b^2\Leftrightarrow c=b\)

Tới đây bí rồi

23 tháng 1 2017

Bài 1:

a) \(\frac{a}{5}=\frac{-3}{b}\)

\(\Rightarrow ab=-15\)

Ta có bảng sau:

a 1 -1 15 -15
b -15 15 -1 1

Vậy cặp số \(\left(a;b\right)\)\(\left(1;-15\right);\left(-1;15\right);\left(15;-1\right);\left(-15;1\right)\)

b) @Nguyễn Huy Thắng

Bài 2:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right)\)

Vậy a = b = c

23 tháng 1 2017

nhân chéo xét Ư(21) quá dễ

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

21 tháng 8 2019

Em vào thống kê hỏi đáp của chị mà xem bài 1

21 tháng 8 2019

thanks

4 tháng 3 2018

a)   Ta có:     \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\)  (thay b+c = a)             (1)

                     \(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\)  (2)

Từ (1) và (2) suy ra:        \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\)  (đpcm)

b)     \(c=a+b\)\(\Rightarrow\)\(a=c-b\)

Ta có:   \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\)  (thay c-b = a)          (3)

              \(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\)   (4)

Từ (3) và (4) suy ra:    \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\)   (đpcm)

27 tháng 2 2017

a) 1/2 + 1/3 + 1/4 = 6/12 + 4/12 + 3/12 = 13/12 = 1,083 (số này không phải là số tự nhiên)

Bài b , c cũng làm tương tự.Cách làm này là cách làm của lớp 5

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...