Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{a}{12}=\frac{b}{9}=\frac{c}{5}\)
Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=12k\\b=9k\\c=5k\end{cases}}\)
Ta có \(abc=12k\cdot9k\cdot5k=20\)
\(\Rightarrow540k^3=20\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
Với \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}a=\frac{1}{3}\cdot12=4\\b=\frac{1}{3}\cdot9=3\\c=5\cdot\frac{1}{3}=\frac{5}{3}\end{cases}}\)
a) Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\)
\(\rightarrow a=12k,b=9k,c=5k\)
Ta có: \(abc=20\)
\(\rightarrow12k\cdot9k\cdot5k=20\)
\(\rightarrow540\cdot k^3=20\rightarrow k^3=\frac{1}{27}\)
\(\rightarrow k^3=\left(\frac{1}{3}\right)^3\rightarrow k=\frac{1}{3}\)
\(a=12k\rightarrow a=12\cdot\frac{1}{3}=4\)
\(b=9k\rightarrow b=9\cdot\frac{1}{3}=3\)
\(c=5k\rightarrow c=5\cdot\frac{1}{3}=\frac{5}{3}\)
Vậy \(a=4,b=3,c=\frac{5}{3}\)
1) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{2x+y}{10+4}=\frac{28}{14}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{4}=2\Rightarrow y=8\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)
d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
=> \(x:\frac{1}{45}=\frac{1}{2}\)
=> \(x=\frac{1}{2}.\frac{1}{45}\)
=> \(x=\frac{1}{90}\)
Vậy \(x=\frac{1}{90}.\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)
Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.
Chúc bạn học tốt!
Nhiều thế :( Làm 1,2 câu thôi nhé
a) \(\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}\) (bị mất nét nhưng vẫn nhìn ra là số 12 nhỉ?)
b) \(\frac{-2}{5}+\frac{7}{21}=\frac{-42}{105}+\frac{35}{105}=\frac{-7}{105}=\frac{-1}{15}\)
\(\frac{a}{b}=\frac{3}{5};\frac{b}{c}=\frac{4}{7}\)
\(=>\frac{a}{b}=\frac{12}{20};\frac{b}{c}=\frac{20}{35}\)
\(=>\frac{a}{12}=\frac{b}{20};\frac{b}{20}=\frac{c}{35}\)
\(=>\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ....
Tự làm nốt nhé :v
\(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\Rightarrow\frac{a}{12}=\frac{b}{20}\)
\(\frac{b}{c}=\frac{4}{7}\Rightarrow\frac{b}{4}=\frac{c}{7}\Rightarrow\frac{b}{20}=\frac{c}{35}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\)
den day tu ap dung
a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)
=> \(\frac{a}{3}=\frac{b}{4}\) và \(a.b=48.\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Có: \(a.b=48\)
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)
Chúc bạn học tốt!