Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
a. Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-1\right|\ge0\forall z\end{cases}}\)=> | x +\(\frac{1}{2}\)| + | y -\(\frac{3}{4}\)| + | z - 1 |\(\ge\)0\(\forall\)x ; y ; z
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-1\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
Vậy x = - 1/2 ; y = 3/4 ; z = 1
Câu b,c bạn làm tương tự nhé
b) Ta có :
\(\frac{x-4}{y-3}=\frac{4}{3}\)
\(\Leftrightarrow\)\(\frac{x-4}{4}=\frac{y-3}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-4}{4}=\frac{y-3}{3}=\frac{x-4-\left(y-3\right)}{4-3}=\frac{x-4-y+3}{1}=\frac{5-1}{1}=4\)
Do đó :
\(\frac{x-4}{4}=4\Rightarrow x-4=4.4=16\Rightarrow x=16+4=20\)
\(\frac{y-3}{3}=4\Rightarrow y-3=4.3=12\Rightarrow y=12+3=15\)
Vậy \(x=20\)và \(y=15\)
Bài 2 :x+1/3=x-3/4 <=>4.(x+1)=3.(x-3) 4x+4=3x-9 4x-3x=-9-4 x=-13
Bài 1:
ta có: \(\frac{17}{x+1}.\frac{x}{6}=\frac{17x}{6x+6}\)
Để 17x/6x+6 thuộc Z
=> 17x chia hết cho 6x + 6
=> 102x chia hết cho 6x + 6
102x + 102 - 102 chia hết cho 6x + 6
17.(6x+6) - 102 chia hết cho 6x+6
mà 17.(6x+6) chia hết cho 6x + 6
=> 102 chia hết cho 6x + 6
=> ...
bn tự lm típ nha!
Bài 2:
ta có: \(\frac{x+1}{3}=\frac{x-3}{4}\)
\(\Rightarrow4x+4=3x-9\)
\(\Rightarrow4x-3x=-9-4\)
\(x=-13\)
a; 3:\(\frac{2x}{5}\)= 1:0.001
3:\(\frac{2x}{5}\)=1000
\(\frac{2x}{5}\)=1000:3
\(\frac{2x}{5}\)=0.003
2x=0.003.5
2x=0.015
x=0.015:2
x=7.5
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
x=by+cz;y=ax+cz;z=ax+by
=>x+y+z=2(ax+by+cz)
\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)
\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)
\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)
\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)
\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)
\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
1 ) Ta có :
b - a = 1 => b và a là hai số nguyên liên tiếp
MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( - 8 ) và ( - 9 )
Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
2 ) \(\frac{1}{2.y}\)= \(\frac{x}{3}-\frac{1}{6}\)
\(\frac{1}{2y}\)= \(\frac{2x-1}{6}\)
=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z
=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
Lập bảng giá trị tương ứng giá trị của x , y :