Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
Bài 1:
Vì \(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)
Xét tích; a.(b+d)=ab+ad (2)
b.(a+c)=ba+bc (3)
Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .
Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)
Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)
Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
hay x<y<z
Bài 2:
a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)
b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)
c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)
Bài 3:
Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))
=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)
Vậy A\(>\dfrac{1}{5}\)
Bài 4:
M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp
M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)
Bài 5:
Ta dùng phương pháp phản chứng:
Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)
=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)
Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)
Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài
a) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ \(\Leftrightarrow a-3\ne0\Leftrightarrow a\ne3\)
b) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ dương \(\Leftrightarrow a-3< 0\Leftrightarrow a< 3\)
c) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu âm \(\Leftrightarrow a-3>0\Leftrightarrow a>3\)
d) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số nguyên đương
\(\Leftrightarrow a-3\in B\left(5\right)=\left\{-1;-5\right\}\)
\(\Leftrightarrow a\in\left\{2;-2\right\}\)a)\(A>0\Leftrightarrow\left(a+3\right)\left(a-5\right)>0\Rightarrow\)có 2TH
TH1
nếu a + 3 < 0 => a < -3
TH2
nếu a - 5 > 0 => a > 5
b)\(A=0\Leftrightarrow a+3=0\Rightarrow a=-3\)
c) \(A< 0\Leftrightarrow\left(a+3\right)\left(a-5\right)< 0\Rightarrow\)có 2TH
TH1 8 > a + 3 > 0 => 5 > a > -3
TH2 2 < a - 5 < 0 => -3 < a < 5
d) \(A\in Z\Leftrightarrow a+3⋮a-5\)
\(\Rightarrow\left(a-5\right)+8⋮a-5\)
\(\Rightarrow a-5\inƯ\left(8\right)\)
\(\Rightarrow a-5\in\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
\(\Rightarrow a\in\left\{6;7;9;13;4;3;1;-3\right\}\)
Xét số hữu tỉ \(\dfrac{a}{b}\) , có thể coi b > 0
a) Nếu a , b cùng dấu thì a > 0 và b > 0
Suy ra\(\dfrac{a}{b}>\dfrac{0}{b}=0\) tức là \(\dfrac{a}{b}\) dương
b) Nếu a,b khác dấu thì a < 0 và b > 0
Suy ra \(\dfrac{a}{b}< \dfrac{0}{b}=0\) tức là \(\dfrac{a}{b}\) âm
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 1:
a: Để B>0 thì (a+3)/(a-5)>0
=>a>5 hoặc a<-3
b: Để B=0 thì a=-3
c: Để B<0 thì a+3/a-5<0
=>-3<a<5