Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a-b}{2a+b}=\frac{b-c}{b+c}=\frac{b+2c}{-a-b}\)
=> \(\frac{a-b+b-c+b+2c}{2a+b+b+c-a-b}=\frac{a+b+c}{a+b+c}=1=\frac{1}{a+b+c}\Rightarrow a+b+c=1\)
Khi đó \(\hept{\begin{cases}a-b=2a+b\\b-c=b+c\\b+2c=-a-b\end{cases}\Rightarrow\hept{\begin{cases}a=-2b\\c=0\end{cases}}}\)
Mặt khác a + b + c = 1
<=> -2b + b = 1
=> b = - 1
=> a = 2
Vậy a = 2 ; b = - 1 ; c = 0
bài này dễ mà
ta có a(a+b+c)+b(a+b+c)+c(a+b+c)=\(\frac{-1}{24}\)+\(\frac{1}{16}\)+\(\frac{-1}{72}\)=\(\frac{1}{144}\)
hay (a+b+c)2=\(\frac{1}{144}\)
=> a+b+c=\(\frac{1}{12}\)
rồi từ dó tự làm dc rồi nha
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
Ta có \(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\) --->\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)
--->\(\frac{a+b+c}{b+c}=\frac{c+a+b}{a+b}=\frac{b+c+a}{c+a}\)
Nên:\(b+c=a+b=c+a\)
Với \(b+c=a+b\)--->\(c=a\)
Với\(a+b=c+a\)--->\(b=c\)
Từ đó suy ra: \(a=b=c\)--->\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}=\frac{1}{2}\)\(=A\)
A=\(\frac{a+b+c}{\left(b+c\right)+\left(a+b\right)+\left(c+a\right)}\)
A=\(\frac{a+b+c}{2\left(a+b+c\right)}\)
- Nếu a+b+c=0
=>A=0
- Nếu a+b+c\(\ne\)0
=>A=\(\frac{1}{2}\)
\(A=\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{2}\)(tính chất dãy tỉ số = nhau)
\(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}=\frac{a+b+c}{b+c+a+b+c+a}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}\)\(=\frac{1}{2}\)
Vậy A =1/2
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8
Ta có:A= a/b+c = b/a+c = c/a+b
=>A+1 = (a/b+c)+1 = (b/a+c)+1 = (c/a+b)+1
A+1= a+b+c/b+c = a+b+c/a+c = a+b+c/a+b
A+1= (a+b+c+a+b+c+a+b+c)/(b+c+a+c+a+b)
A+1= 3(a+b+c)/2(a+b+c)
A+1=3/2
=>A=(3/2)-1
A=1/2
Chắc thế
A=1/2.(Hình như thế)