\(\frac{a+b+c}{\left(a+b\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

a/ 

\(\frac{a+b+c}{\left(a+b\right)^2-c\left(a+b\right)}.\frac{2a+2b}{a^2+2ab-c^2+b^2}\)

\(=\frac{a+b+c}{\left(a+b\right)\left(a+b-c\right)}.\frac{2\left(a+b\right)}{\left(a+b+c\right)\left(a+b-c\right)}\)

\(=\frac{2}{\left(a+b-c\right)^2}\)

10 tháng 11 2016

b/ \(\frac{3x+3y}{x^2+y^2-2xy}:\frac{6x+6y}{ax-by+bx-ay}\)

\(=\frac{3\left(x+y\right)}{\left(x-y\right)^2}.\frac{\left(x-y\right)\left(a-b\right)}{6\left(x+y\right)}\)

\(=\frac{a-b}{2\left(x-y\right)}\)

Bài 1.Cho \(x+y+z=0\)Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)CMR: \(xy+yz+zx=0\)Bài 3. Cho \(3x-y=2z\)                \(2x+y=7z\)Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)Bài 5....
Đọc tiếp

Bài 1.Cho \(x+y+z=0\)

Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

CMR: \(xy+yz+zx=0\)

Bài 3. Cho \(3x-y=2z\)

                \(2x+y=7z\)

Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)

Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)

Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)

Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)

Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)

Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

6
15 tháng 2 2019

làm nổi à bạn. 

15 tháng 2 2019

1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)

\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)

29 tháng 10 2019

\(b.=\frac{1\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{1c-1a+1a-1b+1b-1c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=-\frac{2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

29 tháng 10 2019

Sr nha

Kq mik nhầm

Ko phải -2b đâu mà = 0

5 tháng 4 2017

Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)

5 tháng 4 2017

1) Đặt n+1 = k^2

2n + 1 = m^2

Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ 

Đặt m = 2t+1

=> 2n+1 = m^2 = (2t+1)^2

=> 2n+1 = 41^2 + 4t + 1

=> n = 2t(t+1)

=> n là số chẵn

=> n+1 là số lẻ

=> k lẻ 

+) Vì k^2 = n+1

=> n = (k-1)(k+1)

Vì k -1 và k+1 là 2 số chẵn liên tiếp

=> (k+1)(k-1) chia hết cho * 

=> n chia hết cho 8

+) k^2 + m^2 = 3a + 2

=> k^2 và m^2 chia 3 dư 1

=> m^2 - k^2 chia hết cho 3

m^2 - k^2 = a

=> a chia hết cho 3

Mà 3 và 8 là 2 số nguyên tố cùng nhau

=> a chia hết cho 24

24 tháng 9 2019

Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Sau đó chứng minh tương tự bunhiacopxki

20 tháng 10 2018

chào bê đê

31 tháng 3 2020

an có 10000000 quả cam an cho mẹ gấp đôi rồi an co ba số quả lớn hơn mẹ 200 vậy an còn bao nhiêu quả cam

a) \(\frac{5x-1}{3x^2y}+\frac{x-1}{3x^2y}=\frac{5x-1+x-1}{3x^2y}=\frac{6x}{3x^2y}=\frac{2}{xy}\)

b) \(\frac{7}{12xy^2}+\frac{11}{18x^3y}=\frac{7\left(\frac{3}{2}x^2\right)}{18x^3y^2}+\frac{11y}{18x^3y^2}=\frac{10,5x^2+11y}{18x^3y^2}\)

c) \(\frac{x}{x+2}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{x\left(4x-7\right)}{\left(x+2\right)\left(4x-7\right)}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}\)

\(=\frac{4x^2-7x+7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{4x^2-16}{\left(x+2\right)\left(4x-7\right)}\)