Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu dễ tự làm nha:
\(D=\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(D=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)\(D=-\dfrac{1}{100}-1\)
A = 1/99 - 1/99.98 - 1/98.97 - ............... - 1/3.2 - 1/2.1
\(A=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(B=\frac{1}{99.98}+\frac{1}{97.87}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
\(B=1-\frac{1}{99}\)
\(B=\frac{98}{99}\)
\(\Rightarrow A=\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
a) \(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt A = \(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
A = \(1-\frac{1}{99}\)
A = \(\frac{98}{99}\)
Thay A vào ta được :
\(\frac{1}{100.99}-\frac{98}{99}=\frac{1}{9900}-\frac{98}{99}=\frac{-9799}{9900}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-3,6.21\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Ta thấy biểu thức trong ngoặc thứ ba của tử số có kết quả bằng 0
\(\Rightarrow\)Phân số ấy có kết quả bằng 0
c) Ta có: \(\dfrac{3}{5}+\dfrac{-5}{20}+\dfrac{30}{75}+\dfrac{-7}{4}\)
\(=\dfrac{3}{5}+\dfrac{2}{5}+\dfrac{-1}{4}+\dfrac{-7}{4}\)
\(=1-2=-1\)
Giải:
a)-1/12+4/3=-1/12+16/12=15/12=5/4
b)(-4/14-3/15)-(1/5-20/35-(-1)).7
=-17/35-22/35.7
=-17/35-22/5
=-171/35
c)3/5+-5/20+30/75+-7/4
=3/5+-1/4+2/5+-7/4
=(3/5+2/5)+(-1/4+-7/4)
=1+-2
=-1
d)5/6.-12/14+7/13
=-5/7+7/13
=-16/91
e)2/-9-5/-36-1/4
=-1/12-1/4
=-1/3
f)2/23+-5/12+7/18+21/23+-7/12
=(2/23+21/23)+(-5/12+-7/12)+7/18
=1+-1+7/18
=7/18
\(1,-\dfrac{4}{7}+\dfrac{2}{3}\times\dfrac{-9}{14}\)
\(=\dfrac{-4}{7}+\dfrac{-18}{42}\)
\(=\dfrac{-4\times6}{7\times6}+\dfrac{-18}{42}\)
\(=\dfrac{-20}{42}+\dfrac{-18}{42}\)
\(=-\dfrac{38}{42}\)
\(=-\dfrac{19}{21}\)
\(2,\dfrac{17}{13}-\left(\dfrac{4}{13}-11\right)\)
\(=\dfrac{17}{13}-\dfrac{4}{13}+11\)
\(=\dfrac{13}{13}+11\)
\(=1+11\)
\(=12\)
\(3,8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)
\(=\dfrac{58}{7}-\left(\dfrac{31}{9}+\dfrac{30}{7}\right)\)
\(=\dfrac{58}{7}-\dfrac{31}{9}-\dfrac{30}{7}\)
\(=\dfrac{58}{7}-\dfrac{30}{7}-\dfrac{31}{9}\)
\(=\dfrac{28}{7}-\dfrac{31}{9}\)
\(=\dfrac{28\times9}{7\times9}-\dfrac{31\times7}{9\times7}\)
\(=\dfrac{252}{63}-\dfrac{217}{63}\)
\(=\dfrac{35}{63}\)
\(=\dfrac{5}{9}\)
\(5,\left(\dfrac{2}{3}-1\dfrac{1}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2}{3}-\dfrac{3}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2\times2}{3\times2}-\dfrac{3\times3}{2\times3}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{4}{6}-\dfrac{9}{6}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}:\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}\times\dfrac{3}{4}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1\times12}{2\times12}\)
\(=\dfrac{-15}{24}+\dfrac{12}{24}\)
\(=\dfrac{-3}{24}\)
\(=-\dfrac{1}{8}\)
\(6,\dfrac{-5}{13}+\dfrac{2}{5}+\dfrac{-8}{13}+\dfrac{3}{5}-\dfrac{3}{7}\)
\(=\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)+\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{3}{7}\)
\(=\dfrac{-13}{13}+\dfrac{5}{5}-\dfrac{3}{7}\)
\(=-1+1-\dfrac{3}{7}\)
\(=-\dfrac{3}{7}\)
\(7,\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}:\dfrac{7}{10}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}\times\dfrac{10}{7}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+1\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{1\times7}{1\times7}\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{7}{7}\right)\)
\(=\dfrac{6}{5}\times\dfrac{20}{7}\)
\(=\dfrac{120}{35}\)
\(=\dfrac{24}{7}\)
a; - \(\dfrac{2}{3}\) + \(\dfrac{3}{4}\) - (- \(\dfrac{1}{6}\)) + (- \(\dfrac{2}{5}\))
= - \(\dfrac{2}{3}\) + \(\dfrac{3}{4}\) + \(\dfrac{1}{6}\) - \(\dfrac{2}{5}\)
= \(-\dfrac{40}{60}\) + \(\dfrac{45}{60}\) + \(\dfrac{10}{60}\) - \(\dfrac{24}{60}\)
= \(\dfrac{5}{60}\) + \(\dfrac{10}{60}\) - \(\dfrac{24}{60}\)
= \(\dfrac{15}{60}\) - \(\dfrac{24}{60}\)
= - \(\dfrac{3}{20}\)
b; (- \(\dfrac{2}{3}\)) + (- \(\dfrac{1}{5}\)) + \(\dfrac{3}{4}\) - \(\dfrac{5}{6}\) - \(\dfrac{-7}{10}\)
= - \(\dfrac{2}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{3}{4}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{10}\)
= - \(\dfrac{40}{60}\) - \(\dfrac{12}{60}\) + \(\dfrac{45}{60}\) - \(\dfrac{50}{60}\) + \(\dfrac{42}{60}\)
= - \(\dfrac{52}{60}\) + \(\dfrac{45}{60}\) - \(\dfrac{50}{60}\) + \(\dfrac{42}{60}\)
= - \(\dfrac{7}{60}\) - \(\dfrac{50}{60}\) + \(\dfrac{42}{60}\)
= - \(\dfrac{57}{60}\) + \(\dfrac{42}{60}\)
= - \(\dfrac{1}{4}\)