K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

1/

a) \(123.456+123.789-1245.23\)

\(=123.\left(456+789\right)-1245.23\)

\(=123.1245-1245.23\)

\(=1245.\left(123-23\right)\)

\(=1245.100\)

\(=124500\)

b) \(2^9\div16^2+81^5\div3^{18}-125^7\div625^5\)

\(=2^9\div\left(2^4\right)^{^2}+\left(3^4\right)^{^5}\div3^{18}-\left(5^3\right)^{^7}\div\left(5^4\right)^{^5}\)

\(=2^9\div2^8+3^{20}\div3^{18}-5^{21}\div5^{20}\)

\(=2^1+3^2-5^1\)

\(=2+9-5\)

\(=6\)

2/ a) Ta có: 7n chia 3 dư 1 hoặc dư 2

Nếu 7^n chia 3 dư 1 => 7^n + 2 chia hết cho 3 => Tích chia hết cho 3

Nếu 7^n chia 3 dư 2 => 7^n + 1 chia hết cho 3 => Tích chia hết cho 3

Vậy (7^n + 1).(7^n + 2) chia hết cho 3 

ĐK đúng: n thuộc N

b) Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y) . (y + z) . (z + x) \(⋮2\)

=> (x + y)(y + z)(z + x) + 2016 \(⋮2\) (vì 2016 \(⋮\) 2)

Mà 20172018 \(⋮̸\) 2

Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

17 tháng 4 2017

KHOAN ĐÃ LỚP 6 ĐÃ HỌC HẰNG ĐẲNG THỨC SỐ 5 ĐÂU LỚP 8 MỚI HỌC MÀ

17 tháng 4 2017

Đây là đề thi học sinh giỏi môn toán cấp huyện.

Vì n là số tự nhiên nên n có dạng:

n=2k hoặc n= 2k+1 ( k ∈N∈N)

Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)

= 2(2k+3)(k+6)⋮⋮2

⇒⇒(n+3)(n+12) ⋮2⋮2

Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)

= (2k+4)(2k+13)

= 2(k+2)(2k+13)⋮2⋮2

⇒⇒ (n+3)(n+12)⋮2⋮2

Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

28 tháng 12 2016

bài này mình chụi