K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)

Diện tích ban đầu của hình chữ nhật là:

\(ab\left(m^2\right)\)

Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:

\(\left(a-2\right)\cdot2b=ab+240\)

\(\Leftrightarrow2ab-4b=ab+240\)

\(\Leftrightarrow ab-4b=240\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m

25 tháng 1 2022
25 tháng 1 2022

loading...

 

3 tháng 4 2015

Gọi chiều dài HCN là x              => chiều rộng là x - 3

Khi tăng chiều dài thêm 1/4 của nó tức là: x + 1/4x = 5/4x

Khi tăng chiều rộng thêm 1cm tức là x - 3 + 1 = x - 2

Diện tích ban đầu của HCN là x(x - 3)

Diện tích sau khi thay đổi các kích thước là: 5/4x(x - 2)

Theo đề bài ta có phương trình:     x(x - 3) + 20 = 5/4x.(x - 2)

                                                 <=>  x2 - 3x + 20 = 5/4x2 - 5/2x

                                                 <=>  1/4x2 + 1/2x - 20 = 0

                                                 <=>  x = 8 (n)        x = - 10 (l)

=> Chiều dài HCN là 8cm

=> Chiều rộng HCn là 5cm

NV
1 tháng 6 2021

Gọi chiều dài của hcn là x>0 (cm), chiều rộng hcn là y> 0(cm)

Do chiều dài gấp 3 chiều rộng nên ta có pt: \(x=3y\) (1)

Khi tăng chiều dài và chiều rộng thêm 5cm thì chiều dài và chiều rộng tương ứng là: \(x+5\) và \(y+5\) (cm)

Do diện tích khi tăng kích thước là 153 cm2 nên ta có pt:

\(\left(x+5\right)\left(y+5\right)=153\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}x=3y\\\left(x+5\right)\left(y+5\right)=153\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\\left(3y+5\right)\left(y+5\right)=153\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\3y^2+20y-128=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\\left[{}\begin{matrix}y=4\\y=-\dfrac{32}{3}< 0\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=4\end{matrix}\right.\)

Vậy hcn ban đầu dài 12 rộng 4 cm

1 tháng 6 2021

Gọi chiều dài là a (cm), chiều rộng là b (cm)

(ĐK: a;b > 0)

Chiều dài gấp 3 lần chiều rộng \(\Rightarrow a=3b\)

Diện tích mới sau khi tăng chiều dài và chiều rộng 5cm là 153cm2 \(\Rightarrow\left(a+5\right)\left(b+5\right)=153\)

Ta lập hệ phương trình:

\(\left\{{}\begin{matrix}a=3b\\\left(a+5\right)\left(b+5\right)=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left(3b+5\right)\left(b+5\right)=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\3b^2+15b+5b+25=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\3b^2+20b-128=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left(b-4\right)\left(3b+32\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left[{}\begin{matrix}b=4\left(tmđk\right)\\b=\dfrac{-32}{3}\left(ktmđk\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3.4=12\left(tmđk\right)\\b=4\end{matrix}\right.\)

Vậy chiều dài hình chữ nhật là 12cm, chiều rộng hình chữ nhật là 4cm

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của khu vườn(Điều kiện: a>0; b>0; \(a\ge b\))

Vì chiều dài gấp 2 lần chiều rộng nên ta có phương trình: a=2b

hay a-2b=0(1)

Diện tích ban đầu là: \(ab\left(m^2\right)\)

Vì khi tăng chiều dài 77m và tăng chiều rộng 15m thì diện tích sẽ gấp 3 lần diện tích ban đầu nên ta có phương trình:

\(\left(a+77\right)\left(b+15\right)=3ab\)

\(\Leftrightarrow ab+15a+77b+1155-3ab=0\)

\(\Leftrightarrow15a+77b-2ab=-1155\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-2b=0\\15a+77b-2ab=-1155\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\30b+77b-2\cdot2b\cdot b+1155=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\-4b^2+107b+1155=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\-4b^2+140b-33b+1155=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\-4b\left(b-35\right)-33\left(b-35\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\\left(b-35\right)\left(-4b-33\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\\left[{}\begin{matrix}b-35=0\\-4b-33=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\\left[{}\begin{matrix}b=35\left(nhận\right)\\b=-\dfrac{33}{4}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot35=70\\b=35\end{matrix}\right.\)(thỏa ĐK)

Diện tích ban đầu của khu vườn là:

\(ab=70\cdot35=2450\left(m^2\right)\)

Vậy: Diện tích ban đầu của khu vườn là \(2450m^2\)