K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2015

Đặt     S=1+4+4^2+4^3+...+4^100

=>    4S=4+4^2+4^3+4^4+...+4^101

=>4S-S=4+4^2+4^3+4^4+...+4^101-1-4-4^2-4^3-...-4^100

=>    3S=4^101-1

=>      S=4^101-1/3

Vậy 1+4+4^2+4^3+...+4^100=4^101-1/3

l-i-k-e cho mình nha bạn!

18 tháng 6 2015

Đặt A= 1+4+42+43+...+4100

=> 4A=4+42+43+...+4101

4A-A=(4+42+43+...+4101)-(1+4+42+43+...+4100)

4A-A=4101-1

Hay A(4-1)=3A=4101-1

=> A=(4101-1)/3

15 tháng 10 2017

B = 1+4+42+43+...+4100

4B= 4+42+43+44+....+4101

4B-B= 4+42+43+44+....+4101 -1-4-42- 43-...- 4100

3B = 4101 - 1

  B  = \(\frac{4^{101}-1}{3}\)

15 tháng 10 2017

B x 4=4+42+43+44+............+4100

B X 4 - 4=(4+42+43+44+.......+4100+4101) - (1+41+42+43+44+..............+4100)

=>B=4101 – 1

k hộ mình nha

6 tháng 8 2016

a, Đặt \(A=1+3+3^2+3^3+....+3^{100}\)

=> \(3A=3+3^2+3^3+3^4+...+3^{101}\)

=> \(2A=3A-A=3^{101}-1\)

=> \(A=\frac{3^{101}-1}{2}\)

Vậy giá trị của biểu thức là \(\frac{3^{101}-1}{2}\)

b, Đặt \(B=1+4+4^2+2^3+....+4^{50}\)

=> \(4B=4+4^2+4^3+4^4+....+4^{51}\)

=> \(3B=4B-B=4^{51}-1\)

=> \(B=\frac{4^{51}-1}{3}\)

Vậy giá trị của biểu thức là \(\frac{4^{51}-1}{3}\)

11 tháng 10 2015

Tên bạn là gì trả lời đúng rùi đó

27 tháng 8 2020

a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)

=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)

=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)

<=> \(2A=3^{101}-1\)

=> \(A=\frac{3^{101}-1}{2}\)

b) Ta có: \(B=1+4+4^2+...+4^{100}\)

=> \(4B=4+4^2+4^3+...+4^{101}\)

=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)

<=> \(3B=4^{101}-1\)

=> \(B=\frac{4^{101}-1}{3}\)

21 tháng 9 2016

a) Ta có: \(2A=2^2+2^3+2^4+2^5+2^6+...+2^{99}\) 

-

                \(A=2+2^2+2^3+2^4+2^5+2^6+...+2^{100}\)

_______________________________________________________

                \(A=2-2^{100}\)

Các bài khác cũng thế. Đây là mình tự nghĩ chứ không biết có đúng không. Có 60% sai! :) 

30 tháng 12 2021
Sẽ Gầy bạn ạ
26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.

22 tháng 8 2017

a) Đặt \(C=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{100}}\)

\(\Rightarrow5C=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)

\(\Rightarrow5C-C=1-\dfrac{1}{5^{100}}\Rightarrow4C=1-\dfrac{1}{5^{100}}\Rightarrow C=\dfrac{1-\dfrac{1}{5^{100}}}{4}\)

\(\Rightarrow A=8.5^{100}.\dfrac{1-\dfrac{1}{5^{100}}}{4}+1=2.\left(5^{100}-1\right)+1=2.5^{100}-2+1=2.5^{100}-1\)

22 tháng 8 2017

b)\(B=\dfrac{4}{3}-\dfrac{4}{3^2}+...-\dfrac{4}{3^{100}}\)

\(B=4.\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)\)

Đặt \(\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)=D\)

\(\Rightarrow3D=1-\dfrac{1}{3}+...-\dfrac{1}{3^{99}}\)

\(\Rightarrow3D+D=1-\dfrac{1}{3^{100}}\)

\(\Rightarrow D=\dfrac{1-\dfrac{1}{3^{100}}}{4}\)

2 tháng 10 2015

bài A và B nè bạn!

A=1+3+32+...+3100

3A=3+32+33+...+3101

=>3A+1=1+3+32+...+3100+3101=A+3101

=>3A-A=3101-1

2A=3101-1

A=(3101-1)/2

B=1+4+42+...+450

4B=4+42+...+451

4B+1=1+4+42+...+450+451=B+451

=>4B-B=451-1

3B=451-1

B=(451-1)/3