Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\left(3a-1\right)^2\) + \(2\left(3a-1\right)\left(3a+1\right)\) + \(\left(3a-1\right)^2\)
= \(\left(3a-1+3a+1\right)^2\)
= \(\left(6a\right)^2\)
= \(36a^2\)
\(\left(3a-1\right)^2+2\left(9a^2-1\right)+\left(3a+1\right)^2\)
\(=\left(3a-1+3a+1\right)^2\)
\(=36a^2\)
\(a,A=4-4x+x^2+6x^2-8x-8+9x^2+12x+4\\ A=16x^2\\ b,x=-\dfrac{1}{2}\Leftrightarrow A=16\cdot\dfrac{1}{4}=4\)
a: \(A=x^2-4x+4+9x^2-12x+4+2\left(3x^2+2x-6x-4\right)\)
\(=10x^2-16x+8+6x^2-8x-8\)
\(=16x^2-24x\)
b: \(A=16\cdot\dfrac{1}{4}-24\cdot\dfrac{-1}{2}=4+12=16\)
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
\(=8x^3-36x^2+54x-27+2x^2-8x^3-29\)
\(=-34x^2+54x-56\)
Điều kiện: x ≠ 1
M = 4 x 2 − 3 x + 5 x 3 − 1 − 1 − 2 x x 2 + x + 1 − 6 x − 1 = 4 x 2 − 3 x + 5 x − 1 x 2 + x + 1 − 1 − 2 x x 2 + x + 1 − 6 x − 1 = 4 x 2 − 3 x + 5 x − 1 x 2 + x + 1 − 1 − 2 x x − 1 x 2 + x + 1 − 6 x 2 + x + 1 x − 1 = 4 x 2 − 3 x + 5 x − 1 x 2 + x + 1 − x − 1 − 2 x 2 + 2 x x 2 + x + 1 − 6 x 2 + 6 x + 6 x − 1 = 4 x 2 − 3 x + 5 + 2 x 2 − 3 x + 1 − 6 x 2 − 6 x − 6 x − 1 x 2 + x + 1 = − 12 x x 3 − 1
Đáp án cần chọn là A
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
\(1,\\ a,=x^2-6x+8+3x^2-15x=4x^2-21x+8\\ b,=9x^2+12x+4-x^2+9=8x^2+12x+13\\ 2,\\ a,\Leftrightarrow x^2+8x+16-x^2+4=5\\ \Leftrightarrow8x=-15\Leftrightarrow x=-\dfrac{15}{8}\\ b,\Leftrightarrow9x^2-6x+1-8x^2-2x+12x+3-x^2=5\\ \Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)