K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
N
2
26 tháng 9 2016
\(2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(2A-A=2^{101}-2\)
\(A=\frac{2^{101}-2}{2}\)
TH
0
TT
1
12 tháng 9 2017
c.
C= ( a+b+c)2+(a+b-c)2- 2(a+b)2
=a2+b2+c2+a2+b2- c2-2a2-2b2
= 2a2+2b2+c2-c2-2a2-2b2
= 0
Vậy C= 0
DP
0
D
3
A = 1 + 2 + 22 + 23 + ... + 299 + 2100 . (1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{101}\) (2)
Trừ 2 vế của (1) và (2) cho nhau được \(A=2^{101}-1\)
Ta có: A = 1 + 2 + 22 + 23 + ... + 299 + 2100.
2A = 2 (1 + 2 + 22 + 23 + ... + 299 + 2100)
= \(2\cdot1+2\cdot2+2\cdot2^2+2\cdot2^3+...+2\cdot2^{99}+2\cdot2^{100}.\)
2A = \(2+2^2+2^3+2^4+...+2^{100}+2^{101}.\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
A = \(2^{101}-1\).
Vậy A = 2101 - 1.