K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

Câu 1:

Gọi số cặp Toán-Lý là x, Lý-Hóa là y, Toán-Hóa là z

Ta có: \(\left\{{}\begin{matrix}x+y=8\\y+z=9\\x+z=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=4\end{matrix}\right.\)

\(\Rightarrow\) Có 3 cặp T-L, 5 cặp L-H, 4 cặp T-H

Số các chia để 2 bạn An và Bình cùng cặp:

\(C_3^2+C_4^2+C_5^2=19\)

Xác suất: \(P=\frac{19}{C_{12}^2}=\frac{19}{66}\)

Câu 2:

Chọn 2 bạn nam và sắp thứ tự vào 2 bên CP: \(A_5^2\) cách

Chọn vị trí cho bộ 3 người này trong 1 hàng: 3 cách chọn

Còn lại 4 nữ và 3 nam, để không có 2 bạn nữ nào xếp cạnh nhau thì hàng còn lại (không có mặt CP) phải có đúng 3 bạn nữ \(\Rightarrow\) hàng CP xếp thêm 1 nam và 1 nữ: có \(2!.4.3=24\) cách

Cách chọn 3 bạn nữ và xếp thứ tự vào hàng còn lại: \(A_3^3\)

Xếp 2 bạn nam xen kẽ vào 3 bạn nữ: \(2!\) cách

Vậy có tổng cộng: \(A_5^2.3.24.A_3^3.2!=...\)

Xác suất: số nào đó :D

11 tháng 7 2019

Chọn A.

Lời giải.

Không gian mẫu là số cách chọn 2 phần thưởng trong số 12 phần thưởng

Suy ra số phần tử của không gian mẫu là  Ω = C 12 2 = 66

Gọi A là biến cố ""Bạn An và bạn Bình có phần  thưởng giống nhau"".

Để tìm số phần tử của A, ta làm như sau

Gọi x là cặp số gồm 2 quyển Toán và Vật Lí

y là số cặp gồm 2 quyển Toán và Hóa Học;

z là số cặp gồm 2 quyển Vật Lí và Hóa Học

Ta có hệ phương trình

Suy ra số phần tử của biến cố A là

Ω A = C 3 2 + C 4 2 + C 5 2

Vậy xác suất cần tính  P ( A ) = 19 66

12 tháng 3 2019

Đáp án D

Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.

Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình

Trong đó, cách chọn số bộ Toán Lý là C 3 2 , cách chọn số bộ Toán Hóa là C 3 2 , cách chọn số bộ Hóa Lý là  C 4 2

Do đó, xác suất là

31 tháng 5 2019

Đáp án D

Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.

Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình.

Trong đó, cách chọn số bộ Toán Lý là C 3 2

cách chọn số bộ Toán Hóa là C 4 2

cách chọn số bộ Hóa Lý là  C 5 2 .

Do đó, xác suất là

21 tháng 10 2019

9 tháng 3 2019

Chọn D

Giá có 3 ngăn như vậy có 2 vách ngăn, coi 2 vách ngăn này là 2 quyển sách giống nhau. Khi đó

bài toán trở thành xếp 14 quyển sách (2 quyển “VÁCH NGĂN” giống nhau) vào 14 vị trí. Đầu

tiên chọn 2 vị trị trí xếp vách ngăn là  C 14 2 , 12 vị trí còn lại xếp 12 quyển sách là 12!. Vậy không gian mẫu là  C 14 2 .12!.

Gọi A là biến cố “không có bất kì hai quyển sách toán nào đứng cạnh nhau”. Ta tìm số cách xếp thỏa mãn A

Đầu tiên ta xếp 11 quyển sách gồm 4 quyển lí, 5 quyển hóa và 2 quyển “VÁCH NGĂN”. Cũng

như trên, ta chọn 2 vị trí xếp 2 quyển “VÁCH NGĂN” trước là  C 11 2 sau đó xếp 9 quyển còn lại là 9!. Vậy số cách xếp 11 quyển này là  C 11 2 .9!. Sau khi xếp xong 11 quyển này thì sẽ có sẽ có 12 khe. Ta chọn 3 khe để xếp 3 quyển toán còn lại, là A 12 3 .

Vậy số cách thỏa mãn biến cố A là . C 11 2 .9!. A 12 3

Vậy .

11 tháng 11 2017

Chọn D

Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu 

Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.

+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có  11 ! 2 ! cách

+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3  cách.

Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra  

Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:

Theo bài thì mỗi bạn sẽ nhận 2 quyển vở khác loại. Gọi số bạn nhận vở toán văn là $a$, vở văn anh là $b$, vở anh toán là $c$

Ta có:

$a+b+c=9; a+b=6; b+c=5; a+c=7$

$\Rightarrow a=3; b=2; c=4$

Tặng quà cho 9 bạn thỏa đề tức là tặng quà sao cho có 3 bạn trong 9 bạn nhận được toán văn, 2 bạn trong 6 bạn còn lại nhân được văn anh, 4 bạn còn lại nhận được anh toán. Số cách trao là:

$C^3_9.C^2_6.C^4_4=1260$

3 tháng 5 2019

Đáp án B

30 quyển sách chia thành 15 bộ gồm :

+) 6 bộ giống nhau gồm 1 Toán- 1 Lý

+) 5 bộ giống nhau gồm 1 Lý – 1 Hóa

+) 4 bộ giống nhau gồm 1 Toán – 1 Hóa

Chọn 6 học sinh trong 15 học sinh để trao bộ Toán- Lý có  C 15 6 cách

Chọn 5 học sinh trong 9 học sinh còn lại để trao bộ Lý- Hóa có C 9 5 cách

Vậy 4 học sinh còn lại sẽ được nhận bộ Toán – Hóa. Vậy có C 15 6 . C 9 5 cách trao thưởng.