Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài phải sửa thành AE=ED
a/
Xét tg ABC
DE//AB (gt)
BD=CD (gt)
=> AE=CE (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) (1)
Mà DE=AE (gt) (2)
Từ (1) và (2) => DE=AE=CE (3)
Ta có
BD=CD (gt); AE=CE (cmt) => DE là đường trung bình của tg ABC
\(\Rightarrow DE=\dfrac{AB}{2}\) (4)
Từ (3) và (4) \(\Rightarrow DE=AE=CE=\dfrac{AB}{2}\)
\(\Rightarrow AE+CE=AB\) Mà \(AE+CE=AC\Rightarrow AB=AC\)
=> tg ABC cân tại A
b/
Xét tg ABC có
AD là trung tuyến (gt)
AE=CE (cmt) => BE là trung tuyến
=> G là trọng tâm của tg ABC (Trong tg 3 đường trung tuyến đồng quy tại 1 điểm gọi là trọng tâm của tg)
B1:
a) xét 2 tam giác vuông ABH và ACK có:
góc BAC chung
AB = AC (gt)
góc ABH = góc ACK (cùng phụ vs góc ABC)
=> tam giác ABH = tam giác ACK (g.c.g)
b) tam giác ABH = tam giác ACK (câu a)
=> AK = AH mà AB = AC = AK + BK = AH + CH => BK = CH (1)
do AK = AH => tam giác AKH cân tại A => góc AKH = góc AHK = (1800 - góc BAC) : 2 (*)
ta có: góc ABC = góc ACB = (1800 - góc BAC ) : 2 (**)
từ (*) và (**) => góc ABC = góc AKH (đồng vị ) => BC // KH (2)
từ (1) và (2) => tứ giác BCHK là hình thang đều
t i c k nhé!! 3543645767658587687689698797808657568568