Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H

a, tam giác vuông CHF=CHE (c.g.c) => CF=CE => Tam giác CEF cân tại C
gọi O là giao điểm của Ak và BF
tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK
BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180
=> AOB=KOB=90=> BF vuông AK
=> AK//HC ( cùng vuông BF)
b, tam giác vuông ABF=KBF => AF=FK
cạnh huyền FC > FK => FC > FA
c, gọi D là giao điểm AB;CH
tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F
mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này
=> Ba đường thẳng CH, FK,AB đồng quy
M N P H E F
a, NH và PH lần lượt là hình chiếu của đường xiên MN và MP
mà MN = MP
⇒NH = PH
b, Xét ΔHEN và ΔHFP ,có :
NH = PH ( c/m a )
\(\widehat{HEN}=\widehat{HFP}=90^0\)
\(\widehat{N}=\widehat{P}\) ( ΔMNP cân tại M )
⇒ΔHEN = ΔHFP ( cạnh huyền - góc nhọn )
⇒ HE = HF
em cảm ơn chị nhiều