Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB=AC⇒ΔABC cân tại A
Vì trong tam giác cân đường cao đồng thời là đường phân giác ⇒AD cũng là đường phân giác
Ta có: ΔABC cân tại A
mà AD là đường cao
nên AD là đường phân giác
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
a) tam giác ABC có:
AB=AC => tam giác ABC cân tại A
Lại có: AD là đường phân giác của tam giác TG ABC
=> AD cũng là đường cao của tam giác ABC
b) xét tam giác EAD và tam giác ADF ta có:
AD chung
góc EAD = FDA ( AD là đpg)
AE =AF ( AB -BE=AC-FC)
=> TG EAD =TG ADF(cdc)
=> góc EDA=góc ADC(2 góc tương ứng)
mà AD nằm giữa 2 góc
=>...
a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD⊥BC
b: Ta có: AE+BE=AB
AF+FC=AC
mà BE=CF
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
Góc EAD=góc FAD
AD chung
Do đó: ΔAED = ΔAFD
Suy ra: Góc EAD = góc FDA
hay DA là tia phân giác của góc EDF
cau a phai la tamgiac HBA = tamgiac AMD phai k
phai thi tu ve hinh :
a, DM | IH (GT) va AH | BH (GT) ma 2 duong thang DM; BH phan biet
=> DM // BH (dl)
=> goc MDB + DBH = 180o (tcp)
co tamgiac ADB vuong can tai A do goc A = 90o (gt) va AD = AB (gt)
=> goc MDA + goc ABH = 90o
ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)
=> goc MAD = goc ABH
xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)
=> tamgiac AMD = tamgiac BHA (ch - gn)
a) D là trung điểm của BC (gt).
=> DB = DC.
Xét tg ADB và tg ADC có:
DB = DC (cmt).
AB = AC (gt).
AD chung.
=> tg ADB = tg ADC (c - c - c).
b) Xét tg ABC cân tại A (AB = AC):
AD là trung tuyến (D là trung điểm của BC).
=> AD là tia phân giác góc BAC. (tính chất các đường trong tg cân).
c) Xét tg ABC cân tại A (AB = AC):
AD là trung tuyến (D là trung điểm của BC).
=> AD là đường cao. (tính chất các đường trong tg cân).
=> AD vuông góc với BC.
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: ΔABD cân tại A
=>góc ADH=góc ABH
mà góc ABH=góc HAC
nên góc ADH=góc HAC
ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>góc BAH=góc DAH
mà góc BAH=góc ACB
nên góc DAH=góc ACB
c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
góc HDA=góc EDC
=>ΔDHA đồng dạng với ΔDEC
=>góc ECD=góc HAD
=>góc ECB=góc ACB
=>CB là phân giác của góc ACE
e: ΔBAD cân tại A
=>góc ADB<90 độ
=>góc ADC>90 độ
Xét ΔADC có góc ADC>90 độ
nên AC là cạnh lớn nhất
=>AC>CD
vì tam giác ADB = ADC
nên góc ADB = ADC (tương ứng)
ta có: ADB + ADC = 180o
mà góc ADB = ADC
nên 2 góc ABD = 2 góc ADC = 180o
hay ADB = ADC = 180 : 2 = 90o
=> AD vuông góc với BC tại D.
Hình bạn tự vẽ nha
Xét tam giác ABD và tam giác ACD có :
AB = AC ( GT )
Góc BAD = CAD ( AD là p/g góc A )
AD chung
=> tam giác ABD = tam giác ACD ( c . g . c )
=> góc ADB = góc ADC ( 2 góc tương ứng )
Mà góc ADB + góc ADC = 180 độ ( 2 góc kề bù )
=> góc ADB = góc ADC = 90 độ
=> AD vuông góc với BC ( Đpcm )