\(\sqrt{x-1}=\sqrt{2x+3}\)

2) \(\sqrt{2x-3}=\sq...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

1) \(\sqrt{x-1}=\sqrt{2x+3}\) ĐK: x ≥ 1; x ≥ \(\dfrac{-3}{2}\) => x ≥ 1

=> x - 1 = 2x + 3

=> x - 2x = 3 + 1

=> -x = 4 => x = -4 (ko TMĐK)

Vậy S = ∅

2) \(\sqrt{2x-3}=\sqrt{x-1}\) ĐK: x ≥ \(\dfrac{3}{2}\); x ≥ 1 => x ≥ \(\dfrac{3}{2}\)

=> 2x - 3 = x - 1

=> 2x - x = -1 + 3

=> x = -2 (ko TMĐK)

Vậy S = ∅

3) \(\sqrt{2-x}=\sqrt{3+x}\) ĐK: x ≥ 2; x ≥ -3 => x ≥ 2

=> 2 - x = 3 + x

=> -x - x = 3 - 2

=> -2x = 1 => x = \(\dfrac{-1}{2}\) (ko TMĐK)

Vậy S = ∅

4) \(\sqrt{4x-8}=2\sqrt{x-2}\) ĐK: x ≥ 2

=> 4x - 8 = 2(x - 2)

=> 4x - 8 = 2x - 4

=> 4x - 2x = -4 + 8

=> 2x = 4 => x = 4 : 2 = 2 (TMĐK)

Vậy S = \(\left\{2\right\}\)

5) \(\sqrt{x^2-5}=\sqrt{4x-9}\) ĐK: \(\left|x\right|=\sqrt{5}\) ; x ≥ \(\dfrac{9}{4}\)

<=> x2 - 5 = 4x - 9

<=> x2 - 4x - 5 + 9 = 0

<=> x2 - 4x - 4 = 0 <=> (x - 2)2 =0

=> x = 2 (ko TMĐK)

6) \(\sqrt{x-2}=\sqrt{x^2-2x}\) ĐK: x ≥ 2

=> x - 2 = x2 - 2x

=> x - 2 - x2 + 2x = 0

=> (x - 2) - x(x - 2) = 0

=> (1- x) . (x - 2) = 0

=> \(\left\{{}\begin{matrix}1-x=0\\x-2=0\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-0=1\left(loai\right)\\x=0+2=2\left(TMĐK\right)\end{matrix}\right.\)

Vậy S = \(\left\{2\right\}\)

7) \(\sqrt{x^2-3x}-\sqrt{15-5x}=0\) ĐK: x ≥ 3 hoặc x ≤ 0

<=> \(\sqrt{x^2-3x}=\sqrt{15-5x}\)

<=> x2 - 3x = 15 - 5x

=> x2 - 3x + 5x - 15 = 0

=> x(x -3) + 5(x - 3) = 0

=> (x + 5) . (x - 3) = 0

=> \(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0-5=-5\\x=0+3=3\end{matrix}\right.\)(TMĐK)

Vậy S = \(\left\{-5;3\right\}\)

8) \(\sqrt{4x^2-9}=\sqrt{-20x-18}\) ĐK: \(\left|x\right|\text{≥}\dfrac{3}{2}\) hoặc x ≤ \(\dfrac{-9}{10}\)

<=> 4x2 - 9 = -20x - 18

<=> 4x2 - 9 + 20x + 18 = 0

<=> 4x2 + 20x + 9 =0

<=> 4x2 + 2x + 18x + 9 =0

<=> 2x(2x + 1) + 9(2x + 1) = 0

<=> (2x + 9) . (2x + 1) = 0

=> \(\left[{}\begin{matrix}2x+9=0\\2x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=-9\\2x=-1\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=\dfrac{-9}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy S = \(\left\{\dfrac{-9}{2};\dfrac{-1}{2}\right\}\)

9) \(\sqrt{x-2}=\sqrt{x-2}\) ĐK: x ≥ 2

<=> x - 2 = x - 2

<=> x - x = 2 - 2

=> 0x = 0 với mọi x TMĐK: x ≥ 2

Kết luận: Phương trình vô nghiệm thoả mãn: x ≥ 2

1,

√(x-1) = √(2x+3)

->(√x-1)^2 = (√2x+3)^2

->x-1=2x+3

->x=-4

2

√(2x−3)=√(x−1) (bình phương lên tiếp)

->2x-3=x-1

->x=2

3->9 tự làm nha tương tự

20 tháng 8 2019

a) \(\sqrt{4x}=10\) (ĐKXĐ: 4x>=0 <=> x>=0)

\(\Leftrightarrow4x=100\)

\(\Leftrightarrow x=25\)

\(S=\left\{25\right\}\)

b) \(\sqrt{x^2-2x+1}=8\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=8\)

\(\Leftrightarrow x-1=8\)

\(\Leftrightarrow x=9\)

\(S=\left\{9\right\}\)

c) \(\sqrt{x^2-6x+9}=\sqrt{1-6x+9x^2}\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(1-3x\right)^2}\)

\(\Leftrightarrow x-3=1-3x\) hoặc \(\Leftrightarrow x-3=-1+3x\)

\(\Leftrightarrow x+3x=1+3\) \(\Leftrightarrow x-3x=-1+3\)

\(\Leftrightarrow4x=4\) \(\Leftrightarrow-2x=2\)

\(\Leftrightarrow x=1\) \(\Leftrightarrow x=-1\)

\(S=\left\{1;-1\right\}\)

d) \(\sqrt{2x-5}=x-2\)

\(\Leftrightarrow2x-5=x^2-4x+4\)

\(\Leftrightarrow-x^2+2x+4x-5-4=0\)

\(\Leftrightarrow-x^2+6x-9=0\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

e) \(\sqrt{x^2-2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x+1=x+1\)

\(\Leftrightarrow x^2-2x-x+1-1=0\)

\(\Leftrightarrow x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{0;3\right\}\)

g) \(\sqrt{x^2-9}-\sqrt{x-3}=0\) ( ĐKXĐ: x-3>=0 <=> x>=3)

\(\Leftrightarrow\sqrt{x^2-9}=\sqrt{x-3}\)

\(\Leftrightarrow x^2-9=x-3\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x+2=0\) hoặc \(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=-2\) \(\Leftrightarrow x=3\)

\(S=\left\{-2;3\right\}\)

h) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow x-2+x-3-1=0\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

i) \(\sqrt{\frac{2x-3}{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=4\)

\(\Leftrightarrow4\left(x-1\right)=2x-3\)

\(\Leftrightarrow4x-4-2x+3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(S=\left\{\frac{1}{2}\right\}\)

l) \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)

\(\Leftrightarrow x+y-4\sqrt{x}+12-6\sqrt{y-1}=0\)

\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\) hoặc \(\Leftrightarrow\sqrt{y-1}-3=0\)

\(\Leftrightarrow\sqrt{x}=2\) \(\Leftrightarrow\sqrt{y-1}=3\)

\(\Leftrightarrow x=4\) \(\Leftrightarrow y-1=9\)

\(\Leftrightarrow y=10\)

KẾT luận : ..............

Tới đây nhé, nếu mai chưa ai giải thì mình giải hộ cho

CHÚC BẠN HỌC TỐT!

21 tháng 8 2019

m) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

<=> \(\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)

<=>\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)

<=>\(\sqrt{x-1}+2+\sqrt{x-1}+3=5\)

<=> \(2\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}=0\) <=>x=1

Vậy \(S=\left\{1\right\}\)

n) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (*) ( đk \(x\ge\frac{1}{2}\))

<=> \(\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2\)

<=> \(x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-2x+1}=2\)

<=> 2x+\(2\sqrt{\left(x-1\right)^2=2}\)

<=> x+\(\left|x-1\right|=2\)(1)

TH1: \(\frac{1}{2}\le x\le1\)

Từ (1) => x+1-x=2

<=> 1=2(vô lý)

TH2: x>1

Từ (1)=> x+x-1=2

<=> 2x=3<=> \(x=\frac{2}{3}\)(tm pt (*))

Vậy \(S=\left\{\frac{2}{3}\right\}\)

p) \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\) (*) (đk :\(x\ge2\))

Đặt \(\left\{{}\begin{matrix}x-2=a\left(a\ge0\right)\\x+1=b\left(b\ge0\right)\end{matrix}\right.\) =>a+b=2x-1

\(\sqrt{a+b}+\sqrt{a}=\sqrt{b}\)

<=> \(\sqrt{a+b}=\sqrt{b}-\sqrt{a}\)

<=> \(a+b=b-2\sqrt{ab}+a\)

<=> 0=\(-2\sqrt{ab}\)

=> \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) => x=2 (vì x=-1 không thỏa mãn pt(*))

Vậy \(S=\left\{2\right\}\)

q) \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)(*) (đk : \(7\le x\le9\))

Với a,b\(\ge0\) có: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự cm nha) .Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên có:

\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{\frac{2}{2}}=2\) (1)

Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2 \(\ge2\) với mọi x (2)

Từ (1),(2) .Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))

Vậy \(S=\left\{8\right\}\)

20 tháng 7 2019

a) Do VT >=0 nên VP >=0 nên \(x\ge4\)

\(PT\Leftrightarrow\left(x-2\right)-\sqrt{x-2}-2=0\)

Đặt \(\sqrt{x-2}=t\ge\sqrt{4-2}=\sqrt{2}\) thì \(t^2-t-2=0\)

\(\Leftrightarrow t=2\left(loại t = -1 vì nó không thỏa mãn đk\right)\Leftrightarrow x-2=4\Leftrightarrow x=6\)

20 tháng 7 2019

b) (sai thì thôi nha) Dễ thấy x = 4 là một nghiệm

Xét x khác 4:ĐK: \(x>4\)(1) . Mặt khác do VT > 0 nên VP > 0 suy ra x < 4(2)

Do x không thể đồng thời thỏa mãn (1) và (2) nên vô nghiệm.

Vậy x = 4

17 tháng 8 2018

mn ơi giúp mình với ạ

cảm ơn mỏi người ạ =))

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Bài 1:

Để căn thức có nghĩa thì:

a)

\(-5x-10\geq 0\Leftrightarrow 5x+10\leq 0\Leftrightarrow x\leq -2\)

b)

\(x^2-3x+2\geq 0\Leftrightarrow (x-1)(x-2)\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-2\geq 0\\ x-1\leq 0; x-2\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 2\\ x\leq 1\end{matrix}\right.\)

c) \(\frac{x+3}{5-x}\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x+3\geq 0; 5-x>0\\ x+3\leq 0; 5-x< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3\leq x< 5\\ -3\geq x>5 (\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow -3\leq x< 5\)

d) \(-x^2+4x-4\geq 0\)

\(\Leftrightarrow -(x^2-4x+4)\geq 0\Leftrightarrow -(x-2)^2\geq 0\)

\((x-2)^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x=2\)

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

10 tháng 11 2017

\(x^2-2-2\sqrt{4x-7}=0\)

\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(4x^2-5x+1+2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)

\(\Rightarrow x=1\)

. . .

\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)

\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)

Đến đây lập bảng xét dấu

. . .

\(x^2-x+2=2\sqrt{x^2-x+1}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)

Tự làm tiếp nhé.

10 tháng 11 2017

\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)

\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)

\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)

\(\Rightarrow x=5\)

. . .

\(\sqrt{2x^2-4x+5}-x+4=0\)

\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)

\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)

\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)

\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)

\(\Leftrightarrow x^2+5x-6=1\)

Tự làm tiếp nhé.

. . .

\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)

Tự làm tiếp nhé.

NV
2 tháng 4 2020

\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{\left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{\left(\sqrt{8}-\sqrt{3}\right)\left(\sqrt{8}+\sqrt{3}\right)}\)

\(=\sqrt{3}+1+\sqrt{3}-1+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{5}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{5}\)

\(=2\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{8}+\sqrt{3}\)

\(=4\sqrt{3}\)

Giải pt:

1/ \(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\Rightarrow x=3\)

2/ \(\Leftrightarrow\sqrt{3}x^2=\sqrt{12}\Leftrightarrow x^2=\sqrt{4}=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

3/ \(\Leftrightarrow x-5=9\Rightarrow x=14\)

4/ Đề thiếu

5/ \(\Leftrightarrow\left|x-3\right|=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)

NV
2 tháng 4 2020

6/ \(\Leftrightarrow2\left|1-x\right|=6\)

\(\Leftrightarrow\left|1-x\right|=3\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

7/ \(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow x-1=49\Rightarrow x=50\)

8/ \(\Leftrightarrow x+1=2^3=8\)

\(\Rightarrow x=7\)

9/ \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)

10/ \(\Leftrightarrow\sqrt{2}x=\sqrt{50}\Leftrightarrow x=\sqrt{25}\Rightarrow x=5\)

11/ \(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

12/ \(\Leftrightarrow3-2x=\left(-2\right)^3=-8\)

\(\Leftrightarrow2x=11\Rightarrow x=\frac{11}{2}\)

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v