K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2021

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

a: \(\Leftrightarrow\sqrt{6}\left(x+1\right)=5\sqrt{6}\)

=>x+1=5

=>x=4

b: =>x^2/10=1,1

=>x^2=11

=>x=căn 11 hoặc x=-căn 11

c: =>(4x+3)/(x+1)=9 và (4x+3)/(x+1)>=0

=>4x+3=9x+9

=>-5x=6

=>x=-6/5

d: =>(2x-3)/(x-1)=4 và x-1>0 và 2x-3>=0

=>2x-3=4x-4 và x>=3/2

=->-2x=-1 và x>=3/2

=>x=1/2 và x>=3/2

=>Ko có x thỏa mãn

e: Đặt căn x=a(a>=0)

PT sẽ là a^2-a-5=0

=>\(\left[{}\begin{matrix}a=\dfrac{1+\sqrt{21}}{2}\left(nhận\right)\\a=\dfrac{1-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)

=>x=(1+căn 21)^2/4=(11+căn 21)/2

27 tháng 7 2023

tkss b nhiều

26 tháng 8 2021

undefined

26 tháng 8 2021

undefined

1 tháng 9 2023

1) \(\sqrt[]{9\left(x-1\right)}=21\)

\(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)

2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)

\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)

\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)

mà \(\sqrt[]{1-x}\ge0\)

\(\Leftrightarrow pt.vô.nghiệm\)

3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)

\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)

\(\Leftrightarrow2x=50\Leftrightarrow x=25\)

1 tháng 9 2023

1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))

\(\Leftrightarrow3\sqrt{x-1}=21\)

\(\Leftrightarrow\sqrt{x-1}=7\)

\(\Leftrightarrow x-1=49\)

\(\Leftrightarrow x=49+1\)

\(\Leftrightarrow x=50\left(tm\right)\)

2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý) 

Phương trình vô nghiệm

3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)

\(\Leftrightarrow2x=50\)

\(\Leftrightarrow x=\dfrac{50}{2}\)

\(\Leftrightarrow x=25\left(tm\right)\)

4) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

5) \(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow\left|x-3\right|=3-x\)

\(\Leftrightarrow x-3=3-x\)

\(\Leftrightarrow x+x=3+3\)

\(\Leftrightarrow x=\dfrac{6}{2}\)

\(\Leftrightarrow x=3\)

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

10 tháng 10 2020

1) \(ĐK:\orbr{\begin{cases}0\le x\le2-\sqrt{3}\\x\ge2+\sqrt{3}\end{cases}}\)

\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\Leftrightarrow x-5+\sqrt{x^2-4x+1}=3\sqrt{x}-6\)\(\Leftrightarrow\frac{-6\left(x-4\right)}{x-5-\sqrt{x^2-4x+1}}=\frac{9\left(x-4\right)}{3\sqrt{x}+6}\Leftrightarrow\left(x-4\right)\left(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}\right)=0\)

Xét phương trình \(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(18\sqrt{x}-9\right)+9\left(x-\sqrt{x^2-4x+1}\right)=0\)\(\Leftrightarrow\frac{81\left(4x-1\right)}{18\sqrt{x}+9}+\frac{9\left(4x-1\right)}{x+\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(4x-1\right)\left(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}\right)=0\)

Dễ thấy \(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}>0\)với mọi x thỏa mãn điều kiện nên 4x - 1 = 0 hay x = 1/4

Vậy phương trình có tập nghiệm S = {4; 1/4}

10 tháng 10 2020

e làm câu dễ nhất ^^

\(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\left(đk:-1\le x\le4\right)\)

\(< =>\left(\sqrt{x+1}-1\right)+\left(\sqrt{4-x}-2\right)+\left(\sqrt{\left(x+1\right)\left(4-x\right)}-2\right)=0\)

\(< =>\frac{x}{\sqrt{x+1}+1}-\frac{x}{\sqrt{4-x}+2}+\frac{x\left(3-x\right)}{\sqrt{\left(x+1\right)\left(4-x\right)+2}}=0\)

\(< =>x=0\)