Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
Cộng vế với vế ta được
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow T< 2-\dfrac{1}{20}=\dfrac{39}{20}\)
mà 39/20 < 8/7 => T < 8/7
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{6}{8}=\dfrac{3}{4}\)
\(a,\\ =>n-3\inƯ\left(-7\right)\\ Ư\left(-7\right)=\left\{1;-1;7;-7\right\}\\ =>\left\{{}\begin{matrix}n-3=1\\n-3=-1\\n-3=7\\n-3=-7\end{matrix}\right.\\ =>\left\{{}\begin{matrix}n=4\\n=2\\n=10\\n=-4\end{matrix}\right.\)
\(b,\dfrac{n-5}{n+1}=1-\dfrac{6}{n+1}\\ =>n+1\inƯ\left(6\right)\\ Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\\ =>\left\{{}\begin{matrix}\left\{{}\begin{matrix}n+1=1\\n+1=-1\\n+1=2\\n+1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=3\\n+1=-3\\n+1=6\\n+1=-6\end{matrix}\right.\end{matrix}\right.=>\left\{{}\begin{matrix}\left\{{}\begin{matrix}n=0\\n=-2\\n=1\\n=-3\end{matrix}\right.\\\left\{{}\begin{matrix}n=2\\n=-4\\n=5\\n=-7\end{matrix}\right.\end{matrix}\right.\)
a)
Ta có: \(BCNN\left( {10,15} \right) = 30\) nên
\(\begin{array}{l}\dfrac{7}{{10}} = \dfrac{{7.3}}{{10.3}} = \dfrac{{21}}{{30}}\\\dfrac{{11}}{{15}} = \dfrac{{11.2}}{{15.2}} = \dfrac{{22}}{{30}}\end{array}\)
Vì \(21 < 22\) nên \(\dfrac{{21}}{{30}} < \dfrac{{22}}{{30}}\) do đó \(\dfrac{7}{{10}} < \dfrac{{11}}{{15}}\).
b)
Ta có: \(BCNN\left( {8,24} \right) = 24\) nên
\(\dfrac{{ - 1}}{8} = \dfrac{{ - 1.3}}{{8.3}} = \dfrac{{ - 3}}{{24}}\)
Vì \( - 3 > - 5\) nên \(\dfrac{{ - 3}}{{24}} > \dfrac{{ - 5}}{{24}}\) do đó \(\dfrac{{ - 1}}{8} > \dfrac{{ - 5}}{{24}}\).
1/Ta co :
\(\dfrac{15}{7}.\left(\dfrac{1}{5}-\dfrac{46}{45}\right)+\dfrac{46}{45}.\left(\dfrac{15}{7}-\dfrac{45}{46}\right)\)
=\(\dfrac{15}{7}.\dfrac{1}{5}-\dfrac{15}{7}.\dfrac{46}{45}+\dfrac{46}{45}.\dfrac{15}{7}-\dfrac{46}{45}.\dfrac{45}{46}\)
=\(\dfrac{15}{7}.\left(\dfrac{1}{5}-\dfrac{46}{45}+\dfrac{46}{45}\right)-1\)
=\(\dfrac{15}{7}.\dfrac{1}{5}-1\)
=\(\dfrac{3}{7}-1=\dfrac{-4}{7}\)
2/Ta co
\(\dfrac{43}{47}.\left(\dfrac{18}{37}+\dfrac{47}{43}\right)-\dfrac{18}{3}.\left(\dfrac{43}{47}+\dfrac{37}{36}\right)\)
=\(\dfrac{43}{47}.\dfrac{18}{37}+\dfrac{43}{47}.\dfrac{47}{43}-\dfrac{18}{37}.\dfrac{43}{47}+\dfrac{18}{37}.\dfrac{37}{36}\)
=\(\dfrac{18}{37}.\left(\dfrac{43}{37}-\dfrac{43}{37}+\dfrac{37}{36}\right)+1\)
=\(\dfrac{18}{37}.\dfrac{37}{36}+1\)
=\(\dfrac{1}{2}+1=\dfrac{3}{2}\)
tick cho mk nha
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
\(\dfrac{-7}{12}\) < \(\dfrac{x}{46}\) < \(\dfrac{-8}{-15}\)
\(\dfrac{-7}{12}\) < \(\dfrac{x}{46}\) < \(\dfrac{8}{15}\)
12 = 22.3; 46 = 2.23; 15 = 3.5 => MCNN = 22.3.23.5 = 1380
\(\dfrac{-805}{1380}\) < \(\dfrac{30x}{1380}\) < \(\dfrac{736}{1380}\)
-805 < 30\(x\) < 736
\(-\dfrac{805}{30}\) < \(x\) < \(\dfrac{736}{30}\)
\(\dfrac{-161}{6}\) < \(x\)< \(\dfrac{368}{15}\)
Không có điều kiện gì à bạn