K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

Câu 1:

\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)

\(B=6^{16}=2^{16}.3^{16}\)

Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)

Câu 2:

\(A=1+2+2^2+2^3+...+2^{2016}\)

<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)

<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)

<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)

<=>\(A=2^{2017}-1< 2^{2017}=B\)

Vậy A<B

7 tháng 12 2016

muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?

26 tháng 12 2022

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B

14 tháng 11 2023

A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰

⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹

⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)

= 2²⁰¹¹ - 2⁰

= 2²⁰¹¹ - 1

= B

Vậy A = B

30 tháng 10

BÀI BẠN GIỐNG Y CHANG BÀI MIK LUÔN

15 tháng 5 2022

undefined

15 tháng 5 2022

undefined

9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

bạn viết rõ lũy thừa giúp mình với

 

7 tháng 1

\(A=B\)

2 tháng 1

\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)

Ta thấy: \(2^{61}-2< 2^{61}\)

\(\Rightarrow A< B\)

2 tháng 1

A=2+22+23+...+260

\(\Rightarrow\)2A=22+23+24+...+261

\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)

\(\Rightarrow\)A=261-2

Mà 261-2<261 nên A<B

Vậy A<B

14 tháng 10 2023

\(A=2^0+2^1+2^2+...+2^{20}\)

\(2A=2^1+2^2+2^3+...+2^{21}\)

\(A=2^{21}-1\)

Vậy \(A>B\)

 
30 tháng 9 2015

a)Ta có : \(32^{10}=2^{50}\)

              \(16^{15}=2^{60}\)

Vì 50<60 =>2^50<2^60=>32^10<16^15

                    Vậy 32^10>16^15

b)Ta có : 6*5^22=(5+1)*5^22=5^23+5^22

Vì 5^23+5^22>5^23=>6*5^22>5^23

                     Vậy6*5^22>5^23