\(\sqrt{100}-\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

\(-\frac{5}{9}\left(\frac{3}{10}-\frac{2}{5}\right)=-\frac{5}{9}\left(\frac{3}{10}-\frac{4}{10}\right)=-\frac{5}{9}.\frac{-1}{10}=\frac{1}{18}\)

\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{9}{25}}+1^{2016}=\frac{1}{2}.8-\frac{3}{5}+1=4+\frac{2}{5}=\frac{22}{5}\)

\(2^8:2^5+3^2.2-12=2^3+9.2-12=8+18-12=8+6=14\)

25 tháng 12 2018

\(3^x+\sqrt{\frac{16}{81}}-\sqrt{9}+\frac{\sqrt{81}}{3}=9\frac{4}{9}\)

\(3^x+\frac{4}{9}-3+\frac{9}{3}=9\frac{4}{9}\)

\(3^x+\frac{4}{9}-3+3=9\frac{4}{9}\)

\(3^x+\frac{4}{9}=9+\frac{4}{9}\)

\(\Rightarrow3^x=9+\frac{4}{9}-\frac{4}{9}\)

\(3^x=9\)

\(3^x=3^2\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

26 tháng 7 2019

a)\(\sqrt{0,09}\)+2.\(\sqrt{0,25}\)=0,3+2.0,5

                                            =0,3+1

                                            =1,3      

b)0,5.\(\sqrt{100}\)-\(\sqrt{\frac{4}{25}}\)=0,5.10-0,4

                                           =5-0,4

                                           =4,6

c)(\(\sqrt{1\frac{9}{16}}\)  -\(\sqrt{\frac{9}{16}}\)):5=(1,25-0,75):5

                                              =0,5:5

                                              =0,1

d)3.\(\sqrt{1\frac{17}{64}}\) -2.\(\sqrt{0,0625}\)=1,125-2.0,25

                                                      =1,125-0,5

                                                      =0,625  

19 tháng 3 2020

\(\text{Σ}\frac{x^2}{\sqrt[3]{x^3+8}}=\text{Σ}\frac{x^2}{\sqrt[3]{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\text{Σ}\frac{x^2}{\frac{x+2+x^2-2x+4}{2}}=\text{2}\left(Σ\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BDT Cauchy-Schwarz:
\(VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-x-y-z+18}\)
Áp dụng BDT: \(9=3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2\Rightarrow x+y+z\ge3\)

\(\Rightarrow VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-3+18}=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+15}=2\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+xz\right)}\)
\(\ge2\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)^2}=1\)

Dấu = xảy ra khi x=y=z=1
 

10 tháng 2 2020

2.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)

=> x,y,z=

11 tháng 2 2020

1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)

=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)

6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)

Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=> M > 1

Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)

Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> M < 2 (2)

Kết hợp (1) và (2) => 1 < M < 2

=> \(M\notinℤ\)(ĐPCM)

10 tháng 7 2015

A = \(\frac{2012-1}{\sqrt{2012}}+\frac{2011+1}{\sqrt{2011}}=\sqrt{2012}-\frac{1}{\sqrt{2012}}+\sqrt{2011}+\frac{1}{\sqrt{2011}}\)

A = \(\sqrt{2012}+\sqrt{2011}+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)=B+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)

Mà 2011 < 2012 nên \(\frac{1}{\sqrt{2011}}>\frac{1}{\sqrt{2012}}\Rightarrow\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}>0\)

=> A > B

Bài 1

\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)

\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)

\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)

\(=\frac{9}{25}+\frac{8}{9}-1\)

\(=\frac{56}{225}\)

\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)

\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)

\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)

\(=1:\frac{4}{3}=\frac{3}{4}\)

Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v 

\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)

\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)

\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)

\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)

\(=-\frac{1}{2}\)