Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3^1+3^4+3^7+...+3^{100}\)
\(A=\left(3^1+3^4+3^7+3^{10}\right)+...+\left(3^{91}+3^{94}+3^{97}+3^{100}\right)\)
\(A=\left(3^1+3^4+3^7+3^{10}\right)+...+3^{96}.\left(3^1+3^4+3^7+3^{10}\right)\)
\(A=\left(3^1+3^4+3^7+3^{10}\right).\left(1+...+3^{96}\right)\)
\(A=61320.\left(1+...+3^{96}\right)\)
\(A=7665.8.\left(1+...+3^{96}\right)⋮8\)
\(\Rightarrow A=3^1+3^4+3^7+...+3^{100}⋮8\)
* = 1 ; 2 ; 3 ; 4 5 ; 6 ; 7 ; 8 ; 9 ; 0
b/ 120 - x : 4 = 34 : 311
120 - x : 4 = 37
120 - x : 4 = 2187
x : 4 = 120 - 2187
x : 4 = -2067
=> x = -8268
a) 3*2 có tận cùng là 2 nên chia hết cho 2
vậy * = 0;1;2 ... 9
b) 120 - x : 4 = \(3^4:3^{11}\)
120 - x : 4 = \(-\left(3^7\right)\)
x : 4 = 120 - \(\left[-\left(3^7\right)\right]\)
x : 4 = 2307
x = 2307 x 4
x = 9228
a,(x+2)(x-2)-(x-3)(x+1)
= x^2 - 2^2 - ( x^2 + x - 3x - 3 )
= x^2 - 4 - x^2 - x + 3x +3
= 2x -1
duyệt đi olm
22020-22017 = 23.22017 - 22017 = 22017.(23-1) = 22017.7 chia hết cho 7
Có : 2^2020 - 2^2017 = 2^2017.(2^3-1) = 2^2017.7 chia hết cho 7
k mk nha
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
Easy mà! Mà câu 1 sai đề,bạn thử a = b = c =1 xem có ra đẳng thức trên không?
1.Sửa đề: CMR: \(\left(a+b+c\right)-\left(a-b+c\right)-\left(a+b-c\right)=b-a+c\)
Ta có:
\(\left(a+b+c\right)-\left(a-b+c\right)-\left(a+b-c\right)\)
\(=a+b+c-a+b-c-a-b+c\) (bỏ ngoặc và đổi dấu)
\(=\left(a-a-a\right)+\left(b+b-b\right)+\left(c-c+c\right)\)
\(=-a+b+c=b-a+c\) (đpcm)
2. Nhận xét: Các cơ số đều là số âm.
Mà: \(1+2+3+4+...+2016\)
\(=\left(1+3+5+...+2015\right)+\left(2+4+6+...+2016\right)\)
Số số hạng của: \(1+3+5+...+2015\) là: \(\frac{\left(2015-1\right)}{2}+1=1008\) số hạng
Số số hạng của: \(2+4+6+...+2016\) là: \(\frac{\left(2016-2\right)}{2}+1=1008\)( số hạng)
Do đó số số lũy thừa có số mũ lẻ là (1;3;5;...;2015) là: 1008 số (là số chẵn) nên tích của chúng không âm (1)
Mà số có lũy thừa chẵn (2;4;6;...;2016) thì luôn không âm (2)
Từ (1) và (2) ta suy ra: \(\left(-1\right)^1\left(-1\right)^2\left(-1\right)^3...\left(-1\right)^{2016}>0\)
a) So sánh: 275.323 và B=616
Ta có:
*275.323 =( 33) 5 . (25)3
= 315.215
* 616= (2.3)16 =316.216
Vậy: 275.323 < 616
b) A= 1+2 + 22 + 23+.....+ 2 2016 và B= 22017
Ta đặt A= 1+2 + 22 + 23+.....+ 2 2016
2A= 2 + 22 + 23+......+ 22017
2A -A= (2+ 22 + 23+.....+ 2 2017) - (1+2 + 22 + 23+.....+ 2 2016 )
Suy ra A= 22017 -1
Mà 22017 -1 < 22017
Nên 1+2 + 22 + 23+.....+ 2 2016 < B= 22017