Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi số tự nhiên đó là A
A+1 thì chia hết cho 3;4;5
suy ra A+1 là BC (3;4;5)
A + 1 thuộc tập hợp: 60;120;180;240;......
A thuộc tập hợp : 59 ; 119;179;239;.......
Bạn tự làm nốt nhé
Gọi số cần tìm là a, ta có:
a : 3 dư 1 => a+2 chia hết cho 3
a : 4 dư 2 => a+2 chia hết cho 4
a : 5 dư 3 => a+2 chia hết cho 5
a: 6 dư 4 => a+2 chia hết cho 6
=> a+2 thuộc BC (3;4;5;6)
ta có: 3=3
4= 2^2
5=5
6=3*2
=> BCNN (3;4;5;6)= 60
=> a+2 thuộc B(60)
Mà a thuộc B(13)
=> a= 598
a) Trong phép chia cho 3 số dư có thể là 0, 1, 2
________________ 4 _________________, 3
________________ 5 ___________________4
b) Số chia hết vcho 3 là 3k, chia 3 dư 1 là 3k+1, chia 3 dư 2 là 3k+2
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
goi so can tim la a
a : 11 du 4 => (a-4) chia het cho 11=>(a+7) chia het cho 11
a : 13 du 6 =>(a-6) chia het cho 13 => (a+7) chia het cho 13
a chia het cho 7 => (a+7) chia het cho 7
=>(a+7) \(\in\) BC ( 7 ; 11 ; 13 )
ta co : 7 = 7
11 = 11
13 = 13
=> BCNN [ 7 ; 11 ; 13 ] =7.11.13=1001
=>(a+7) \(\in\) B(1001)={0 ;1001 2002 ;...............}
=>a={994;1998....}
ma a la a nho nhat => a = 994
Vay so can tim la 994
sai đoạn cuối rồi 2002-7=1995(chữ số hàng đơn vị là 5)
=> a =1995
Bài 2:
Gọi số cần tìm là A
*2,3,4,5,6 có BCNN là 60
(A - 1) chia hết cho 2,3,4,5,6 nên A = 60a (a là số tự nhiên khác 0)
=> A = 60a + 1
*A chia hết cho 7 nên: A = 60a+1 = 7b
=> 7b = 56a + 4a + 1 = 7.8a + 4a + 1
=> b = 8a + (4a+1)/7
Vì b nguyên dương nên (4a+1) chia hết cho 7
A nhỏ nhất khi a nhỏ nhất thỏa (4a+1) chia hết cho 7
=> a = 5
=> A = 301
**Dạng chung:
Từ trên ta có 4a+1 = 7c = 8c - c
=> a = 2c - (c+1)/4
=> c+1 chia hết cho 4
=> c+1 = 4k
=> c = 4k-1
Thay trở lại ta có:
a = 2c - (c+1)/4 = 8k-2 - (4k-1+1)/4 = 8k-2 -k = 7k-2
A = 60a + 1 = 60(7k-2) + 1 = 420k - 119
Công thức chung là A = 420k - 119 với k nguyên dương
Rõ ràng k nhỏ nhất là 1 nên ứng với A = 301
Mình ko chắc câu b lắm
a) Gọi a là số tự nhiên đó
Ta có a chia 3 dư 1 => ( a + 2 ) chia hết cho 3
a chia 4 dư 2 => ( a + 2 ) chia hết cho 4
a chia 5 dư 3 => ( a + 2 ) chia hết cho 5
a chia 6 dư 4 => ( a + 2 ) chia hết cho 6
nên ( a + 2 ) thuộc BC(3;4;5;6) = B(60) = {0;60;120;180;240;300;360;420;480;540;600;660;...}
=> a thuộc {58;118;178;238;298;358;418;478;538;598;658;...}
mà a chia hết cho 13 và a nhỏ nhất nên a = 598
b) k + 2
giai cho minh bai nua nhe