K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

1/ Nên nhớ ta có kết luận này: (a - b)² = (b - a)² 
(Khai triển ra thấy ngay hoặc xem ?7 trang 11 SGK Toán 8) 
Vậy biểu thức viết lại dưới dạng: a² + 2ab + b² (Với a = x - y + z và b = y - z) 
(x - y + z)² + (z - y)² + 2(x - y + z)(y - z) 
= (x - y + z)² + 2(x - y + z)(y - z) + (y - z)² 
= (x - y + z + y - z)² 
= x²

2/

b) Đẳng thức <=> (ac)² + (ad)² + (bc)² + (bd)² = (ac)² + (ad)² + (bc)² + (bd) + 2ac.bd - 2ad.bc 
<=> 2.ad.bc - 2.ad.bc = 0 
<=> 0 = 0 ( đúng ) => đẳng thức đã cho đúng 

3/ A= x^2-2x+5=(x^2-2x+1)+4=(x-1)^2 +4 
Nhận xét: (x-1)^2 >=0 (do bình phương của 1 số luôn không âm) 
=> (x-1)^2+4>=4(cộng cả 2 vế với 4) 
hayA>= 4 dấu bằng xảy ra khi và chỉ khi x=1 
vậy   min A =4 <=> x=1 

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

20 tháng 8 2017

Bài  2 :

a) Ta có : \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0\forall x\)

Nên : \(P=\left(x-1\right)^2+4\ge4\forall x\)

Vậy GTNN của P là 4 khi x = 1

5 tháng 10 2021

\(3,=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)-\left(z-x\right)^3+\left(z-x\right)^3\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

\(4,=\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-3x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)

5 tháng 9 2017

1.(x-y+z)2+(z-y)2+2(x-y+z)(y-z)= (x-y+z)+2(x-y+z)(y-z)+(y-z)2=(x-y+z+y-z)2=x2

CT : (A+B)2=A2+2AB+B2

5 tháng 9 2017

Ta có : A = 4x - x2 + 3

=> A = -(x2 - 4x - 3)

=> A = -(x2 - 4x + 4 - 7) 

=> A = -(x2 - 4x + 4) + 7

=> A = -(x - 2)2 + 7

Vì : \(-\left(x-2\right)^2\le0\forall x\) 

=>  A = -(x - 2)2 + 7 \(\le7\forall x\)

Vậy Amax = 7 khi x = 2

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá