Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để A là số nguyên thì \(x+3-5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
b: Để B là số nguyên thì \(x^2-1⋮x+1\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)⋮x+1\)
hay \(x\ne-1\)
a) \(\dfrac{\left(-1997\right).1996+1}{\left(-1995\right).\left(-1997\right)+1996}=\dfrac{-1997\left(1995+1\right)+1}{1995.1997+1996}\)
\(=\dfrac{-1997.1995+\left(-1997\right)+1}{1995.1997+1996}=\dfrac{-1997.1995+\left(-1996\right)}{1995.1997+1996}=-1\)
Bài 4:
=>(x-5)*3/10=1/5x+5
=>3/10x-3/2=1/5x+5
=>1/10x=5+3/2=6,5
=>0,1x=6,5
=>x=65
d)
\(\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}\\ =\dfrac{3^{29}.2^6.2^2}{3^{24}.3^5.2^6}\\ =\dfrac{3^{29}.2^6.4}{3^{29}.2^6}\\ =4\)
e)
\(\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}\\ =\dfrac{2^{21}.5^3.3^4}{2^3.2^{18}3^4.5}\\ =\dfrac{2^{21}.5.5^2.3^4}{2^{21}.3^4.5}\\ =5^2\\ =25\)
f)
\(=\dfrac{24\left(315+561+124\right)}{\dfrac{\left(1+99\right).50}{2}-500}\\ =\dfrac{24.1000}{2500-500}\\ =12\)
\(a,\dfrac{-14.15}{21.\left(-10\right)}=\dfrac{-7.2.3.5}{7.3.\left(-2\right).5}=1\)
\(b,\dfrac{5.7-7.9}{7.2+6.7}=\dfrac{7\left(5-9\right)}{7\left(2+6\right)}=\dfrac{-4}{8}=-\dfrac{1}{2}\)
\(c,\dfrac{\left(-7\right).3+2.\left(-14\right)}{\left(-5\right).7-2.7}=\dfrac{-7.\left(3+4\right)}{7\left(-5-2\right)}\)
\(=\dfrac{\left(-7\right).7}{7.\left(-7\right)}=1\)
\(d,\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}=\dfrac{3^{29}.2^8}{3^{24}.3^5.2^6}=\dfrac{3^{29}.2^8}{3^{29}.2^6}=2^2=4\)
\(e,\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}=\dfrac{2^{21}.3^4.5^3}{2^{18}.2^3.3^4.5}=\dfrac{2^{21}.3^4.5^3}{2^{21}.3^4.5}=5^2=25\)
\(f,\dfrac{24.315+3.561.8+4.124.6}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.315+24.561+24.124}{1+3+5+...+97+99-500}\)
\(=\dfrac{24\left(315+561+124\right)}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.1000}{1+3+5+...+97+99-500}\) (1)
Đặt A = 1 + 3 + 5 + ... + 97 + 99
Số số hạng trong A là: (99 - 1) : 2 + 1 = 50 (số)
Tổng A bằng: (99 + 1) . 50 : 2 = 2500
Thay A = 2500 vào biểu thức (1), ta được:
\(\dfrac{24.1000}{2500-500}=\dfrac{24.1000}{2.1000}=12\)
2155-(174+2155)+(-68+174)=2155-174-2155-68+174
= -68
( 1 - \(\dfrac{1}{2}\) ) ( 1- \(\dfrac{1}{3}\)) ( 1 - \(\dfrac{1}{4}\)) ( 1 - \(\dfrac{1}{5}\)) = \(\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}.\dfrac{1}{5}\)
= \(\dfrac{1}{120}\)
Mình ps có 2 câu à ^.^!
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.