Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a ) = (x+y)3 -(x+y)
= (x+y)[(x+y)2+1]
c) = 5(x2-xy+y2)-20z2
=5(x-y)2-20z2
= 5 [ (x-y)2- 4z2 ]
=5(x-y-4z)(x-y+4z)
Bài 1:
a) x3-x+3x2y+3xy2+y3-y
=x3+2x2y-x2+xy2-xy+x2y+2xy2-xy+y3-y2+x2+2xy-x+y2-y
=x(x2+2xy-x+y2-y)+y(x2+2xy-x+y2-y)+(x2+2xy-x+y2-y)
=(x2+2xy-x+y2-y)(x+y+1)
=[x(x+y-1)+y(x+y-1)](x+y+1)
=(x+y-1)(x+y)(x+y+1)
c) 5x2-10xy+5y2-20z2
=-5(2xy-y2+4z2-2)
Bài 2:
5x(x-1)=x-1
=>5x2-6x+1=0
=>5x2-x-5x+1
=>x(5x-1)-(5x-1)
=>(x-1)(5x-1)=0
=>x=1 hoặc x=1/5
b) 2(x+5)-x2-5x=0
=>2(x+5)-x(x+5)=0
=>(2-x)(x+5)=0
=>x=2 hoặc x=-5
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
1.a) 2x4-4x3+2x2
=2x2(x2-2x+1)
=2x2(x-1)2
b) 2x2-2xy+5x-5y
=2x(x-y)+5(x-y)
=(2x+5)(x-y)
2.
a) 4x(x-3)-x+3=0
=>4x(x-3)-(x-3)=0
=>(4x-1)(x-3)=0
=> 2 TH:
*4x-1=0 *x-3=0
=>4x=0+1 =>x=0+3
=>4x=1 =>x=3
=>x=1/4
vậy x=1/4 hoặc x=3
b) (2x-3)^2-(x+1)^2=0
=> (2x-3-x-1).(2x-3+x+1)=0
=>(x-4).(3x-2)=0
=> 2 TH
*x-4=0
=> x=0+4
=> x=4
*3x-2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
vậy x=4 hoặc x=-2/3
a, x4 + 2x3 +x2 = x4 +x3 +x3 +x2 =(x4+x3 )+(x3 +x2 ) =x3(x +1 ) + x2 (x+1 ) =(x+1)(x3+x2)
a) x4 + 2x3 + x2
= x2(x2 + 2x + 1)
= x2(x + 1)2
= [x(x + 1)]2
= (x2 + x)2
b) 5x3 - 10xy + 5y2 - 20z2
= 5(x3 - 2xy + y2 - 4z2)
c) x2y - xy2 + x3 - y3
= xy(x - y) + (x - y)(x2 + xy + y2)
= (x - y)(x2 + 2xy + y2)
= (x - y)(x + y)2
d) x2 - xy + 4x - 2y + 4
= (x2 + 4x + 4) - (xy + 2y)
= (x + 2)2 - y(x + 2)
= (x + 2)(x + 2 - y)
d) x2 - x - 6
= x2 - 3x + 2x - 6
= x(x - 3) + 2(x - 3)
= (x + 2)(x - 3)
f) 3x2 - 5x - 8
= 3x2 + 3x - 8x - 8
= 3x(x + 1) - 8(x + 1)
= (3x - 8)(x + 1)
g) x3 + 3x2 + 6x + 4
= (x3 + 3x2 + 3x + 1) + (3x + 3)
= (x + 1)3 + 3(x + 1)
= (x + 1)[(x + 1)2 + 3]
h) 3x3 - 5x2 - 6x + 8
= 3x3 - 3x2 - 2x2 - 6x + 8
= 3x3 - 3x2 - 2x2 + 2x - 8x + 8
= 3x2(x - 1) - 2x(x - 1) - 8(x - 1)
= (3x2 - 2x - 8)(x - 1)
a) \(x^4+2x^3+x^2=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(5x^2-10xy+5y^2-20z^2\) (đã sửa đề)
\(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
c) \(x^2y-xy^2+x^3-y^3\)
\(=xy\left(x-y\right)+\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
d) \(x^2-xy+4x-2y+4\)
\(=\left(x^2+4x+4\right)-\left(xy+2y\right)\)
\(=\left(x+2\right)^2-y\left(x+2\right)\)
\(=\left(x+2\right)\left(x-y+2\right)\)
e) \(x^2-x-6=\left(x+2\right)\left(x-3\right)\)
f) \(3x^2-5x-8\)
\(=\left(3x^2+3x\right)-\left(8x+8\right)\)
\(=3x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-8\right)\)
a ) ( x3 -x + 3x3y + 3xy2 + y3 -y) = ( x + y )3 - ( x + y ) = ( x-y )2 ( x - y - 1 )
b) x2 + 5x -6 = x2 + 6x -x - 6 = x( x + 6 ) - ( x + 6 ) = ( x -1 ) ( x + 6 )
c) 16 x - 5x2 - 3 = -5x2 + 15x +x -3 = -5x ( x-3 ) + ( x - 3 ) = ( 1 - 5x ) ( x-3)
a, x4 + 2x3 + x2 = \(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2=\left[x\left(x+1\right)\right]^2=\)\(\left(x^2+x\right)^2\)
b, x^3 - x + 3x^2y + 3xy^2+y^3-y
x^3 + 3x^2y + 3xy^2+y^3- x - y
(x+y)^3 - (x+y)
=(x+y)[ (x+y)^2 - 1]
=(x+y)(x+y+1)(x+y-1)
c, 5x^2 - 10xy + 5y^2 - 20(c hỗ này có dấu gì ko???) z^2
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)