Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a nè = (4x-1)(2x-3)
câu f = (x+y+z) ( x^ 2 + y^2 + z^2 +xy + yz + zx)
\(\left(a-b\right)^2-\left(b-a\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+1\right)\)
\(5\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)\)
\(=\left(a+b\right)\left[5\left(a+b\right)-\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[5a+5b-a+b\right]\)
\(=\left(a+b\right)\left[4a+6b\right]\)
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
Bài làm:
a) \(x^6-6x^4+12x^2-8\)
\(=\left(x^2-2\right)^3\)
b) \(x^2+16-8x=\left(x-4\right)^2\)
c) \(10x-x^2-25=-\left(x-5\right)^2\)
d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)
\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)
\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)
e) \(\left(x+y\right)^2-2xy+1\)
\(=x^2+2xy+y^2-2xy+1\)
\(=x^2+y^2+1\)
sai sai
a. \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)
b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)
c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)
d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)
e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)
\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)
\(a,\left(a+b\right)+\left(a+b\right)^2\)
\(=\left(a+b\right)\left(1+a+b\right)\)
\(b,4\left(x-y\right)+3\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+3\left(x-y\right)\right)\)
\(=\left(x-y\right)\left(4+3x-3y\right)\)
\(c,\left(a-b\right)+\left(b-a\right)^2\)
\(=\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(1+a-b\right)\)
a) \(\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(1+a+b\right)\)
b) \(4\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left[4+3.\left(x-y\right)\right]\)
c) \(\left(a-b\right)+\left(b-a\right)^2=\left(a-b\right)+\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)-\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(1-b+a\right)\)
d) \(\left(a-b\right)-\left(b-a\right)^2\)
\(=\left(a-b\right)-\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)+\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(1+b-a\right)\)
e) \(a\left(a-b\right)^2-\left(b-a\right)^3\)
\(=a\left(a-b\right)-\left(a-b\right)\left(b-a\right)^2\)
\(=\left(a-b\right)\left[a-\left(b-a\right)^2\right]\)
f) \(\left(y+z\right)\left(12x^2+6x\right)+\left(y-z\right)\left(12x^2+6x\right)\)
\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)
\(=\left(12x^2+6x\right)2y\)
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
a) \(2x+2y\)
\(=2\left(x+y\right)\)
b) \(5x+20y\)
\(=5\left(x+4y\right)\)
c) \(6xy-30y\)
\(=6y\left(x-5\right)\)
d) \(5x\left[x-110-10y\left(x-11\right)\right]\)
\(=5x\left(x-110-10xy+110\right)\)
\(=5x\left(x-10xy\right)\)
\(=5x^2\left(1-10y\right)\)
e) \(x^3-4x^2+x\)
\(=x\left(x^2-4x+1\right)\)
f) \(x\left(x+y\right)-\left(2x+2y\right)\)
\(=x\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-2\right)\)
h) \(5x\left(x-2y\right)+2\left(2y-x\right)\)
\(=5x\left(x-2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x-2\right)\)
i) \(x^2y^3-\dfrac{1}{2}x^4y^8\)
\(=x^2y^3\left(1-\dfrac{1}{2}xy^5\right)\)
j) \(a^2b^4+a^3b-abc\)
\(=ab\left(ab^3+a^2-c\right)\)
a) \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)
= \(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\) #áp dụng hàng đẳng thức#
c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc
b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)
=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)
= \(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)
=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)
a) \(12x^2y-18xy^2-30y^2=6y\left(2x^2-3xy-5y\right)\)
b) \(5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)
c) \(y\left(x-z\right)+7\left(z-x\right)=y\left(x-z\right)+7\left[-\left(x-z\right)\right]\)
\(=y\left(x-z\right)-7\left(x-z\right)\)
\(\left(y-7\right)\left(x-z\right)\)
d) \(36-12x+x^2=\left(6-x\right)^2\)
e) \(\left(y-4\right)^2-9\left(y+2\right)^2=-4\left(y +5\right)\left(2y+1\right)\)