Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)
\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)
Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)
\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)
Và do $a,b\geq 3$ nên:
\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)
\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)
Cộng tất cả những BĐT trên ta có:
\(A\geq 2+14+62+2=80\) (đpcm)
Dấu "=" xảy ra khi $a=b=3$
Câu 2:
Bình phương 2 vế ta thu được:
\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)
\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)
\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)
\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)
Do đó pt đã cho vô nghiệm.
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)
\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)
\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)
\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)
\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)
\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)
a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)
\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)
c.
\(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\)
\(\leftrightarrow\) \(x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+1+x^2+y^2+x^2y^2=2010\)
\(\leftrightarrow\)\(x^2+x^2y^2+2x\sqrt{1+y^2}.y\sqrt{1+x^2}+y^2+x^2y^2=2009\)
\(\leftrightarrow\) \(\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=2009\)
\(\leftrightarrow\) \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=\sqrt{2009}\)
c) \(A^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2y^2+x^2+x^2y^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)
\(=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)
\(=\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2-1=2010-1=2009\)
Vì A>0 nên \(A=\sqrt{2009}\)
d) \(2009^2=\left(2008+1\right)^2=2008^2+2.2008+1\)
\(1+2008^2=2009^2-2.2008=2009^2-2.2009\dfrac{2008}{2009}\)
\(A=\sqrt{2009^2-2.2009.\dfrac{2008}{2009}+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)
\(A=\sqrt{\left(2009-\dfrac{2008}{2009}\right)^2}+\dfrac{2008}{2009}=2009-\dfrac{2008}{2009}+\dfrac{2008}{2009}=2009\)
k làm đc k cần phải ghi zậy mô ha
1.
\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)
\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)
\(=\left(x^3-x^2+3x\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)
Hay đa thức trên có thể phân tích thành:
\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)
Dựa vào đó em tự tách cho phù hợp