K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

2
5 tháng 7 2018

Bài 2:

a)  \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

b)  \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)

c)  \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề

      còn mấy câu nữa bn đăng lại nhé

5 tháng 7 2018

Bài 1: 

a)  \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

b)   \(x^4+4x^2-5=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

c)  \(x^3-19x-30=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

1
15 tháng 7 2018

a) Ta có: \(x^2-x-6\)

\(=x^2-x-9+3\)

\(=\left(x^2-9\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+2\right)\)

b) Sử dụng phương pháp Hệ số bất định

1. Phân tích đa thức thành nhân tử: a. x2 - x - 6 b. x4 + 4x2 - 5 c. x3 - 19x - 30 2. Phân tích thành nhân tử: a. A = ab(a - b) + b(b - c) + ca(c - a) b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2) c. C = (a + b + c)3 - a3 - b3 - c3 3. Phân tích thành nhân tử: a. (1 + x2)2 - 4x (1 - x2) b. (x2 - 8)2 + 36 c. 81x4 + 4 d. x5 + x + 1 4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n. b. Chứng minh rằng: n3 - 3n2 - n + 3 chia...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

0
1 tháng 10 2019

a/ x -3x+2

= x\(^2\) - 2x -x + 2 = x( x - 2 ) - ( x - 2 ) = ( x - 1 ) ( x - 2 )

b/x2+x-6

= x\(^2\) + 3x - 2x - 6 = x ( x + 3 ) - 2 ( x + 3 ) = ( x - 2 ) ( x + 3 )

c/x2+5x+6

= x\(^2\) + 3x + 2x + 6 = x( x + 3 ) + 2 ( x + 3 ) = ( x +2 )( x +3 )

d/x2-4x+3

= x\(^2\) - 3x - x + 3 = x( x - 3 ) - ( x - 3 ) = ( x- 1 ) ( x- 3 )

e/2x2-5x+3

= 2x\(^2\) - 2x - 3x + 3 = 2x ( x - 1 ) - 3 ( x - 1 ) = ( 2x - 3 ) ( x - 1 )

25 tháng 12 2017

Ta có : P = x4 + x2 - 6x + 9 = x4 + (x2 - 6x + 9) = x4 + (x - 3)2

Mà : x4 \(\ge0\forall x\in R\) 

       (x - 3)\(\ge0\forall x\in R\)

Nên : P = x4 + (x - 3)2 \(\le x-x-3=-3\) 

Vậy GTNN của P = 3 khi x = 0 

       

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)

26 tháng 10 2022

Bài 3:

a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)

b: \(=43^{2018}\left(1+43\right)=43^{2018}\cdot44⋮11\)

1.Chứng minh rằng nếu : \(\dfrac{x}{a}\) = \(\dfrac{y}{b}=\dfrac{z}{c}\) thì : (x2 + y2 + z2 ) (a2 +b2 +c2 ) = (ax +by + cz)2 2. Cho a và b là hai số tự nhiên . Biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1 3. a) Chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 vs mọi n là số nguyên b) Chứng minh rằng : (n-1)(n+4)-(n-4)(n+1) luôn chia hết cho 6 vs mọi số nguyên n 4. Xác định a,b,c,d...
Đọc tiếp

1.Chứng minh rằng nếu : \(\dfrac{x}{a}\) = \(\dfrac{y}{b}=\dfrac{z}{c}\) thì :

(x2 + y2 + z2 ) (a2 +b2 +c2 ) = (ax +by + cz)2

2. Cho a và b là hai số tự nhiên . Biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1

3. a) Chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 vs mọi n là số nguyên

b) Chứng minh rằng : (n-1)(n+4)-(n-4)(n+1) luôn chia hết cho 6 vs mọi số nguyên n

4. Xác định a,b,c,d biết ;

a) (ax2+bx+c)(x+3)=x3 +2x2-3x vs mọi x

b) x4+x3-x2+ax+b=(x2+x-2)(x2+cx+d) vs mọi x

5. Cho đa thức : f(x)=x(x+1)(x+2)(ax+b)

a) Xác định a,b để f(x)-f(x-1)=x(x+1)(2x+1) vs mọi x

b) Tính tổng S = 1.2.3+2.3.5+...+n(n+1)(2n+1) theo n (vs n là số nguyên dương )

6.Xác định a,b,c để :

X3-ax2+bx-c=(x-a)(x-b)(x-c) vs mọi x

Mong các bn giải dùm mk nhanh nhanh mk cần gấp nha ! thank you

1

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)