Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)
\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)
\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)
\(4,,2x^2+x=x\left(2x+1\right)\)
\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)
\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)
\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)
\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
\(e,x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y-1\right)^2\)
Bài 2:
\(b,2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+4x-y^2+4\\ =\left(x^2+4x+4\right)-y^2\\ =\left(x+2\right)^2-y^2\\ =\left(x+2-y\right)\cdot\left(x+2+y\right)\)
\(2xy-x^2-y^2+16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y+4\right)\cdot\left(x-y-4\right)\)
\(x^2-2x-4y^2-4y\\ =\left(x^2-4y^2\right)-\left(2x+4y\right)\\ =\left(x-2y\right)\cdot\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\cdot\left(x-2y+2\right)\)
\(x^2+6x+9-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\cdot\left(x-3+y\right)\)
\(3x^2+6xy+3y^2-3z^2\\ =3\cdot\left(x^2+2xy+y^2-z^2\right)\\ =3\cdot\left[\left(x^2+2xy+y^2\right)-y^2\right]\\ =3\cdot\left[\left(x-y\right)^2-z^2\right]\\ =3\cdot\left(x-y-z\right)\cdot\left(x-y+z\right)\)
\(9x-x^3\\ =x\cdot\left(9-x^2\right)\\ =x\cdot\left(3-x\right)\cdot\left(3+x\right)\)
\(\left(2xy+1\right)^2-\left(2x+y\right)^2\\ =\left(2xy+1-2x-y\right)\cdot\left(2xy+1+2x-y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
k) \(x^3-x+3x^2+3xt^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
h) \(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a nè = (4x-1)(2x-3)
câu f = (x+y+z) ( x^ 2 + y^2 + z^2 +xy + yz + zx)
Câu 2 nek
:
x2(2 − x) − x + 2 = 0
x2(2 - x) + (2 - x) = 0
(x2 +1)(2 - x) = 0
\(\Rightarrow\) \(\left[{}\begin{matrix}2-x=0\\x^2+1=0\end{matrix}\right.\)\(\Rightarrow\) \(\left[{}\begin{matrix}x=2\\x=\sqrt{-1}\end{matrix}\right.\)
Chúc bn học tốt![haha haha](https://hoc24.vn/media/cke24/plugins/smiley/images/haha.png)
a) \(2x^2-6x=2x\left(x-3\right)\)
b) \(x^2-y^2-3x+3y=\left(x^2-y^2\right)-\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
c) \(x^2+2xy+y^2-9z^2=\left(x+y\right)^2-\left(3z\right)^2\)
\(=\left(x+y-3z\right)\left(x+y+3z\right)\)
d) \(2x^2-5x-3=2x^2-2x+3x-3\)
\(=\left(2x^2-2x\right)+\left(3x-3\right)\)
\(=2x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(2x+3\right)\left(x-1\right)\)
e) \(2x^2+2xy=2x\left(x+y\right)\)
g) \(x^2-x-6=x^2-3x+2x-6\)
= \(\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x+2\right)\left(x-3\right)\)
Bài 2: \(x^2\left(2-x\right)-x+2=0\)
\(x^2\left(2-x\right)+\left(2-x\right)=0\)
\(\left(x^2+1\right)\left(2-x\right)=0\)
=> \(x^2+1=0hay2-x=0\)
=> x không tồn tại hay x = 2
=> x = 2