Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)

a) \(\frac{75^3.3^7}{81^4.5^6}=\frac{5^3.3^3.5^3.3^7}{\left(3^4\right)^4.5^6}=\frac{5^6.3^3.3^7}{3^{16}.5^6}=\frac{3^{10}}{3^{16}}=\frac{1}{3^6}=\frac{1}{729}\)
b) \(\frac{6^6.4^2}{3^{12}.2^8}=\frac{2^6.3^6.\left(2^2\right)^2}{3^{12}.2^8}=\frac{2^6.3^6.2^4}{3^{12}.2^8}=\frac{2^{10}.3^6}{3^{12}.2^8}=\frac{2^2.1}{3^6}=\frac{4}{729}\)
c) \(\frac{34^5.2^5}{2^{14}.17^5}=\frac{2^5.17^5.2^5}{2^{14}.17^5}=\frac{2^{10}}{2^{14}}=\frac{1}{2^4}=\frac{1}{16}\)

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3+z^3}{125-64+8}=\dfrac{69}{69}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt[3]{125}=5\\y=\sqrt[3]{64}=4\\z=\sqrt[3]{8}=2\end{matrix}\right.\)

Đặt \(A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}\)
=>\(25A=5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(A+25A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}+5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(26A=5-\frac{1}{5^{99}}=\frac{5^{100}-1}{5^{99}}\)
=>\(A=\frac{5^{100}-1}{5^{99}\cdot26}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(A=\frac{1}{2}-\frac{1}{2.3^{100}}\)