Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
\(s_1=\dfrac{1}{3}s=v_1t_1\Rightarrow t_1=\dfrac{s}{3v_1}\) (1)
Do \(t_2=2t_3\) nên \(\dfrac{s_2}{v_2}=2.\dfrac{s_3}{v_3}\) (2)
Ta có: s2 + s3 = \(\dfrac{2}{3}s\) (3)
Từ (2) và (3) => \(\dfrac{s_3}{v_3}=t_3=\dfrac{2s}{3\left(2v_2+v_3\right)}\) (4)
=> \(\dfrac{s_2}{v_2}=t_2=\dfrac{4s}{3\left(2v_2+v_3\right)}\) (5)
Từ (1), (4), (5), ta có vận tốc tb của ng đó trên cả quãng đường:
\(v_{tb}=\dfrac{s}{t_1+t_2+t_3}=\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{2}{3\left(2v_2+v_3\right)}+\dfrac{4}{3\left(2v_2+v_3\right)}}\)
= \(\dfrac{3v_1\left(2v_2+v_3\right)}{6v_1+2v_2+v_3}\)
\(\dfrac{1}{3}\) quãng đường đầu đi với vận tốc V1 : V1 = \(\dfrac{1}{3}\).S = V1
Quãng đường còn lại đi với vận tốc V2 và V3= \(\dfrac{2}{3}\)S = V2.t2 +V3.t3
Ta có: t2= (\(\dfrac{2}{3}\)) . (t2 + t3) => t3= \(\dfrac{1}{2}\). t2
=> \(\dfrac{2}{3}\).S = V2.t2 + \(\dfrac{1}{2}\) . V3.t2 = ( V2 + \(\dfrac{1}{2}\). V3.).t2
Vận tốc trung bình: V = \(\dfrac{s}{t}\) = \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+t_2+t_3}\)
= \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+\dfrac{1}{2}t_2}\)
Ta thấy: \(\dfrac{2}{3}\)S = 2.(\(\dfrac{1}{3}\)S) (=) (V2 + \(\dfrac{1}{2}\) . V3 ). t2 = 2. V1 . t1
=> [V1.t1 + (V2 + \(\dfrac{1}{2}\) . V3). t2] = 3.V1.t1 và t2= \(\dfrac{\left(2.V_1.t_1\right)}{V_2+\dfrac{1}{2}.V_3}\)
Thay vào vận tốc trung bình, khử t1, quy đồng mẫu, cuối cùng ra được: v=\(\dfrac{\left[3.V_1\left(V_2+\dfrac{1}{2}.V_3\right)\right]}{\left[3.V_1+V_2+\dfrac{1}{2}.V_3\right]}\)
hay v= \(\dfrac{\left[3.V_1\left(2.V_2+V_3\right)\right]}{\left[6.V_1+2.V_2+V_3\right]}\)
Gọi: S1 là 1/3 quãng đg đi với vận tốc v1 , với thời gian t1
S2 là quãng đg đi với vận tốc v2, Với thời gian t2
S3 là quãng đg đi với vận tốc v3, Với thời gian t3
S là quãng đg AB
Theo bài ra, Ta có: S1=1/3S=v1.t1⇒t1=S/3v1 (1)
Ta có: t2=S2/v2 , t3=S3/v3
Vì t2=2.t3 ⇒ S2/v2 = 2.S3/v3 (2)
Ta lại có: S2 + S3 = 2/3.S (3)
Từ (2)(3) ⇒ S3/v3= t3 = 2S/3(2v2+v3) (4)
⇒ S2/v2 = t2 = 4S/3(2v2+v3) (5)
Vận tốc trung bình là:
vtb = S/t1+t2+t3
Từ (1)(4)(5) ta có:
vtb = 1 / [1/3v1 + 2/3(2v2+v3) + 4/3(2v2+v3)] = 3v1(2v2+v3) / 6v1+2v2+v3
Vậy ...
ta có
t1=\(\frac{s}{v_1}\) t2=\(\frac{s}{v_2}\) t3=\(\frac{s}{v_3}\)
Nên: vtb=\(\frac{s+s+s}{t_1+t_2+t_3}\)=\(\frac{3s}{\frac{s}{v_1}+\frac{s}{v_2}+\frac{s}{v_3}}\)=\(\frac{3s}{s\left(\frac{1}{v_1}+\frac{1}{v_2}+\frac{1}{v_3}\right)}\)=\(\frac{3}{\frac{1}{v_1}+\frac{1}{v_2}+\frac{1}{v_3}}\)
Tự tóm tắt nha!
Thời gian người đó đi trên nửa đoạn đường đầu là:
Từ công thức \(v=\dfrac{s}{t}\) \(\Rightarrow t_1=\dfrac{s_1}{v_1}=\dfrac{1}{2}.\dfrac{s}{v_2}\left(h\right)\)
Thời gian người đó đi trong chặng thứ 2 và chặng thứ 3 lần lượt là:
\(\left\{{}\begin{matrix}t_2=\dfrac{s_2}{v_2}\left(h\right)\\t_3=\dfrac{s_3}{v_3}\left(h\right)\end{matrix}\right.\)
Theo bài ra ta có:
\(t_2=t_3=\dfrac{s_2}{v_2}=\dfrac{s_3}{v_3}=\dfrac{s_2+s_3}{v_2+v_3}=\dfrac{1}{2}.\dfrac{s}{v_2+v_3}\left(h\right)\)
(Áp dụng tính chất của dãy tỉ số bằng nhau)
Vận tốc trung bình của người đó trên cả quãng đường là:
\(v_{tb}=\dfrac{s}{t}=\dfrac{s_1+s_2+s_3}{t_1+t_2+t_3}=\dfrac{\dfrac{1}{2}s+\dfrac{1}{2}s}{\dfrac{1}{2}.\dfrac{s}{v_1}+2.\dfrac{1}{2}.\dfrac{s}{v_2+v_3}}\)
\(=\dfrac{s}{\dfrac{s}{2v_1}+\dfrac{s}{v_2+v_3}}=\dfrac{s}{\dfrac{s\left(v_2+v_3\right)+2sv_1}{2v_1\left(v_2+v_3\right)}}\)
\(=\dfrac{s}{\dfrac{s\left(v_2+v_3+2v_1\right)}{2v_1\left(v_2+v_3\right)}}=\dfrac{2v_1\left(v_2+v_3\right)}{2v_1+v_2+v_3}\)
Vậy.............
Chúc bạn học tốt!!!
h cần ko lưu ý nhé nửa tg còn lại => v3 đi với tg của v2
mk nghĩ vậy làm đi :D