Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ về tập hợp: Toàn bộ học sinh lớp 10A
a) 3 ∈ Z
b) √2 ∉ Q
Nếu có P => Q thì ta gọi P là điều kiện cần của Q và đồng thời Q cũng là điều kiện đủ của P
Ta gọi mệnh đề P : a và b - chúng đều là 2 số hữu tỉ, Q : tổng a + b là số hữu tỉ
Mệnh đề ở gt : P => Q
Mệnh đề A : P => Q
Mệnh đề B : Q => P
Mệnh đề C : Q => P
Mệnh đề D : A,B,C đều sai
=> Do đó chúng ta chọn đáp án A là hợp lí nhất.
Mệnh đề phủ định của P: P− “ π không là một số hữu tỉ”.
P là mệnh đề sai, P− là mệnh đề đúng.
Mệnh đề phủ định của Q: Q− “Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh thứ ba”.
Q là mệnh đề đúng, Q− là mệnh đề sai.
a: Để \(\dfrac{2}{x-1}< 0\) thì x-1<0
hay x<1
b: Để \(\dfrac{-5}{x-1}< 0\) thì x-1>0
hay x>1
c: Để \(\dfrac{7}{x-6}>0\) thì x-6>0
hay x>6
d: Để \(\dfrac{x+2}{x-6}>0\) thì x-6>0 hoặc x+2<0
=>x>6 hoặc x<-2
Mệnh đề “√2 là số hữu tỉ’’ sai vì √2 là số vô tỉ
Mệnh đề phủ định: "√2 không phải là một số hữu tỉ"
Tập hợp các số nguyên Z nằm trong tập hợp các số hữu tỉ Q
Có thể nói mỗi số nguyên là một số hữu tỉ
Mệnh đề P đúng, bình phương của một số thực luôn lớn hơn hoặc bằng 0 (không âm).
Mệnh đề Q sai vì \({x^2} = 2 \Leftrightarrow x = \pm \sqrt 2 \notin \mathbb Q\), do đó không có số hữu tỉ nào mà bình phương của nó bằng 2.
1. 3 cách viết là: -0,6 ; -6/10 ; -9/15
2.Định nghĩa: Căn bậc hai của một số a không âm là số x sao cho