Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mệnh đề phủ định của P: P− “ π không là một số hữu tỉ”.
P là mệnh đề sai, P− là mệnh đề đúng.
Mệnh đề phủ định của Q: Q− “Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh thứ ba”.
Q là mệnh đề đúng, Q− là mệnh đề sai.
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.
b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"
c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai
Ví dụ về tập hợp: Toàn bộ học sinh lớp 10A
a) 3 ∈ Z
b) √2 ∉ Q
a) Mệnh đề “Mọi số nguyên đều viết được dưới dạng phân số” đúng.
Vì \(\forall a \in \mathbb{Z}:a = \dfrac{a}{1}\)
Hoặc: \(a \in \mathbb{Z} \subset \mathbb{Q}\) => mỗi số nguyên cũng là một phân số.
b) Mệnh đề "Tập hợp các số thực chứa tập hợp các số hữu tỉ" là mệnh đề đúng.
c) Mệnh đề “Tồn tại một số thực không là số hữu tỉ” đúng.
Ví dụ: \(\sqrt 2 \) ( vì \(\sqrt 2 \in \mathbb{R};\;\sqrt 2 \notin \mathbb{Q}\)).
Mệnh đề sau là mệnh đề gì
a) 8 là số nguyên tố
b) \(\sqrt{2}\)là số hữu tỉ
c) \(5-\sqrt{2}\)là số vô tỉ
a, mệnh đề đúng
b, mệnh đề sai
c, mệnh đề đúng
Nếu có P => Q thì ta gọi P là điều kiện cần của Q và đồng thời Q cũng là điều kiện đủ của P
Ta gọi mệnh đề P : a và b - chúng đều là 2 số hữu tỉ, Q : tổng a + b là số hữu tỉ
Mệnh đề ở gt : P => Q
Mệnh đề A : P => Q
Mệnh đề B : Q => P
Mệnh đề C : Q => P
Mệnh đề D : A,B,C đều sai
=> Do đó chúng ta chọn đáp án A là hợp lí nhất.
Câu A đ