Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
Thay a,b,c lần lượt vào biểu thức...
Tính được kết quả:
a) A= \(-\frac{7}{10}\)
b) B= \(-\frac{2}{7}\)
c) C= 0
Ta có: \(\frac{1}{1^2}=\frac{1}{1\cdot1};\frac{1}{2^2}<\frac{1}{1\cdot2};...;\frac{1}{50^2}<\frac{1}{49\cdot50}\)
=>\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}<1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}=1+1-\frac{1}{50}=2-\frac{1}{50}=1,98\)
hay A<1,98 mà 1,98<2 nên A<2
Vậy A<2
Phân số chỉ 7 m là:
\(1-\frac{5}{9}-\frac{1}{4}=\frac{7}{36}\)
Đoạn đường đó dài là:
7:\(\frac{7}{36}\)=36(m)
Đáp số:36 m
Tick nha
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}<\)\(\frac{1}{2}\)
\(2A<\)\(\frac{1}{2}\)
\(\Rightarrow A<\)\(\frac{1}{4}\)
Vậy \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}<\)\(\frac{1}{4}\)
\(\dfrac{1}{k^2}<\dfrac{1}{k(k-1)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)
Ap dung:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\ldots+\dfrac{1}{n^2}<1+\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\ldots+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)=2-\dfrac{1}{n}<2\)