K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

A sai, vì nếu x= 3 thì x2-4x+3=0

\(\overline{A}:\exists x\in R,x^2-4x+3=0\) (đúng)

NV
14 tháng 8 2020

a/ Khẳng định sai

Phản ví dụ: \(x=5,3\in\left(2,1;5,4\right)\) nhưng \(x\notin\left(2;5\right)\)

b/ Khẳng định đúng, vì \(\left[-4,3;-3,2\right]\subset\left[-5;-3\right]\)

5 tháng 9 2020

Mệnh đề sau sai 

Vì khi x = 1 thì :

VT = \(\frac{1^2-1}{1-1}=\frac{0}{0}\) ( không có phép chia cho 0 ) 

Phủ định của mệnh đề : 

\(\forall x\in R\backslash\left\{1\right\};\frac{x^2-1}{x-1}=x+1\)  là mệnh đề đúng 

6 tháng 5 2023

`@TH1: m-1=0<=>m=1`

   `=>2x+1 > 0<=>x > -1/2`

 `=>m=1` loại

`@TH2: m-1 ne 0<=>m ne 1`

  `=>(m-1)x^2-2(m-2)x+2-m > 0 AA x in RR`

`=>{(m-1 > 0),(\Delta' < 0):}`

`<=>{(m > 1),((m-2)^2-(2-m)(m-1) < 0):}`

`<=>{(m > 1),(3/2 < m < 2):}`

`=>3/2 < m < 2`

6 tháng 5 2023

14 tháng 9 2023

d) \(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)

\(\Leftrightarrow0< x< 1\)

15 tháng 9 2023

a) \(P\left(x\right):"x^2-5x+4=0"\)

\(x^2-5x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng

b) \(P\left(x\right):"x^2-5x+6=0"\)

\(x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng

c) \(P\left(x\right):"x^2-3x=0"\)

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng

d) \(P\left(x\right):"\sqrt[]{x}>x"\)

\(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)

\(\Leftrightarrow0< x< 1\)

Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng

e) \(P\left(x\right):"2x+3< 7"\)

\(2x+3< 7\)

\(\Leftrightarrow2x< 4\)

\(\Leftrightarrow x< 2\)

Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng

f) \(P\left(x\right):"x^2+x+1>0"\)

\(x^2+x+1>0\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng