Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x^2y-50xy=2xy(x-25)
b: 5x^2-10x=5x(x-2)
c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)
d: \(x^2-xy+x=x\left(x-y+1\right)\)
e: x(x-y)-2(y-x)
=x(x-y)+2(x-y)
=(x-y)(x+2)
f: 4x^2-4xy-8y^2
=4(x^2-xy-2y^2)
=4(x^2-2xy+xy-2y^2)
=4[x(x-2y)+y(x-2y)]
=4(x-2y)(x+y)
f1: x^2ỹ-y^2+y
=(x-y)(x+y)+(x+y)
=(x+y)(x-y+1)
\(x-4y+4y^2-xy\)
\(=\left(x-xy\right)-\left(4y-4y^2\right)\)
\(=x\left(1-y\right)-4y\left(1-y\right)\)
\(=\left(1-y\right)\left(x-4y\right)\)
\(x^2-1-y^2-2y\)
\(=x^2-\left(y^2+2y+1\right)\)
\(=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
\(2+2x-xy-y^2\) ( kiểm tra đề nha bn)
\(\left(x+1\right)^2-x-1=\left(x+1\right)^2-\left(x+1\right)=\left(x+1\right)\left(x+1-1\right)=x\left(x+1\right)\)
\(x^2+2y-1-2x+1-y^2\)
\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2=\left(x-1-y+1\right)\left(x-1+y-1\right)=\left(x-y\right)\left(x+y-2\right)\)
a,\(x^2-2x+2y-xy\)
\(=\left(x^2-xy\right)+\left(-2x+2y\right)\)
\(=x\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-2\right)\left(x-y\right)\)
a. \(x^2-2x+2y-xy=\left(x^2-2x\right)-\left(xy-2y\right)=x\left(x-2\right)-y\left(x-2\right)=\left(x-2\right)\left(x-y\right)\)
b. \(x^2+4xy-16+4y^2=\left(x^2+4xy+4y^2\right)-16=\left(x+2y\right)^2-4^2=\left(x+2y-4\right)\left(x+2y+4\right)\)
_______________Chúc bn học tốt________________
A=x(x + 2y) - 2x (3x - y) + 5 (x2 - xy) - (20 - xy)
=x2+2xy-6x2+2xy+5x2-5xy-20+xy
=-20
B=x2 (2x - 3) -x (2x2 + 5) + 3x2 + 5x + 20
=2x3-3x2-2x3+-5x+3x2+5x+20
Câu cuối bạn viết ko rõ
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
a, \(\left(2x+1\right)^2-2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1-x+3\right)^2=\left(x+4\right)^2\)
b, \(xy+xz+3y+3z=x\left(y+z\right)+3\left(y+z\right)=\left(x+3\right)\left(y+z\right)\)
c, \(xy-xz+y-z=x\left(y-z\right)+\left(y-z\right)=\left(x+1\right)\left(y-z\right)\)
d, \(x^2-xy-8x+8y=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x\left(x-y\right)-8\left(x-y\right)=\left(x-8\right)\left(x-y\right)\)
e, \(x^2+2xy+y^2-xz-yz=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y+z\right)\left(x+y\right)\)
f, \(25-4x^2-4xy-y^2=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2=\left(5-2x-y\right)\left(5+2x+y\right)\)
1,
a, (2x + 1- x + 3)2 = (x+4)2
b,\(x\left(y+z\right)+3\left(y+z\right)=\left(y+z\right)\left(x+3\right)\)
c, \(x\left(y-z\right)+\left(y-z\right)=\left(y-z\right)\left(x+1\right)\)
d,\(x\left(x-y\right)+8\left(y-x\right)\)=\(\left(x-y\right)\left(x-8\right)\)
e,\(\left(x+y\right)^2-z\left(x+y\right)\)=\(\left(x+y\right)\left(x+y-z\right)\)
f,\(25-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2\)
\(=\left(5+2x+y\right)\left(5-2x-y\right)\)
Chúc các bn hc tốt
a, 2x+\(xy^2\)-\(x^2y\)-2y
= (2x-2y)+(\(xy^2\)-\(x^2y\))
= 2.(x-y) + xy.(y-x)
= 2.(x-y) - xy. (x-y)
= (2-xy). (x-y)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
1: =m-n-n+m
=2m-2n
2: \(=x-2y+4y-x-x+1=2y-x+1\)