Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n(Ω) = 40
a) Rõ ràng n(A) = 15 nên P(A) = 15/40 = 3/8
Chọn đáp án là C
Ta có n(Ω) = 40
c) Nhận thấy :
Mà P(A∪B) = P(A) + P(B) –P(A∩B), A∩B là biến cố:”học sinh được chọn giỏi cả Văn và Toán” nên n(A∩B)=5/40=1/8
Chọn đáp án C
Nhận xét:
ở ý a) và b) học sinh có thể nhầm khi quan niệm: chọn 1 học sinh nên n(A) =n(B) =1 ⇒ phương án A; hoặc chọn 1 học sinh trong 5 học sinh giỏi Toán và Văn nên n(A) =n(B) = 5
⇒ P(A) =P(B) =5/40=1/8 (phương án D); hoặc sử dụng nhầm công thức P(A) =(n(Ω))/(n(A))=8/3;P(B)=(n(Ω))/(n(B))=4 (phương án C)
ở ý c), học sinh có thể nhầm khi quan niệm:
Nhưng A ¯ v à B ¯ không phải là hai biến cố độc lập
Có thể giải ý c) cách khác như sau:
Số học sinh giỏi Văn và Toán gồm: học sinh giỏi Văn, học sinh hioir Toán, học sinh giỏi cả Văn và Toán nên bằng (15 +10) -5 = 20 em. Do đó, số học sinh không giỏi cả Toán và Văn là 40 – 20 = 20 em, nên n(C) = 20
Vì vậy P(C) =(n(C))/(n(Ω))=1/2
Ta có n(Ω) = 40
b) Rõ ràng n(B) = 10 nên P(B) = 10/40 =1/4
Chọn đáp án B
Có 2 bạn giỏi văn , 7 bạn giỏi toán, 3 bạn giỏi cả 2 môn
Có 2C1.7C1 =14 ( cách )
Số học sinh cả lớp là: 2 : 2/48 = 48 học sinhĐáp số: 48 học sinh
Số HS nam bằng 3/5 số HS nữ, nên số HS nam bằng 3/8 số HS cả lớp
Khi 10 HS nam chưa vào lớp thì số HS nam bằng 1/7 số HS nữ tức bằng 1/8 số HS cả lớp.
Vậy 10 HS biểu thị 3/8 - 1/8 = 1/4 (HS cả lớp)
Nên số HS cả lớp là: 10 : 1/4= 40 (HS)
Số HS nam là : 40. 3/8 = 15 (HS)
Số HS nữ là : 40. 5/8 = 25 (HS)
Gọi số hsg toán là A, số hsg văn là B
số hsg của lớp đó là: \(-\left|A\cap B\right|+\left|A\right|+\left|B\right|=\left|A\cup B\right|=20\)
=> Xác suất chọn 1 hs không giỏi văn và toán: 20