K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(tc dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a}{b}\cdot\frac{c}{d}=\frac{a+c}{b+d}\cdot\frac{a+c}{b+d}\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

6 tháng 11 2017

ta cóa/b=c/d

áp dụng tính chất dãy tỉ số bằng nahu ta có

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=>\(\frac{a}{b}=\frac{a+c}{b+d}\)=>\(\frac{a^2}{b^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

hay \(\frac{a}{b}.\frac{a}{b}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(\frac{a}{b}.\frac{c}{d}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

vậy\(\frac{ac}{bd}\)=\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

t nhé

6 tháng 11 2017

Đặt :

a/b = c/d = k

=> a = bk; c= dk

Xét từng vế của đẳng thức ta dc :

ac/ bd = bk.dk/bd = bd.k^2/bd = k^2 (1)

(a+c)^2/(b+d)^2 = (bk+dk)^2/(b+d)^2 = k^2(b+d)^2/(b+d)^2 = k^2 (2)

Từ (1) + (2) => đpcm

24 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

Vậy ...

10 tháng 11 2018

Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)

          \(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)

Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

22 tháng 5 2018

Ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\left(\frac{a+c}{b+d}\right).\left(\frac{a+c}{b+d}\right)\)hay \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

27 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^2=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\left(đpcm\right)\)

12 tháng 11 2018

Nguyễn Thị Linh Chi: Em có cách khác ạ. (cách này em làm trên lớp thường ngày.Và cũng khác đơn giản ạ)

ĐK: b,d ≠ 0 ; b≠d

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\).Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=kc\\b=kd\end{cases}}\).Thay vào:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(kc+kd\right)^2}{k^2c^2+k^2d^2}=\frac{\left[k\left(c+d\right)\right]^2}{k^2\left(c^2+d^2\right)}=\frac{\left(c+d\right)^2}{c^2+d^2}^{\left(đpcm\right)}\) 

12 tháng 11 2018

\(a^2+b^2\)nha mn

17 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=> \(\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)

=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b=d\right)^2}\left(đpcm\right)\)

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)