Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
c) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
câu b); d) lam tuong tu cau c)
a. Gọi 3 số đó là a; a+1; a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
Tương tự câu b, c, d nha
a) Xét 3 số tự nhiên liên tiếp a; a+1 ; a +2
Nếu a chia hết cho 3 thì a=3k (k thuộc N) khi đó a+1= 3k+1, còn a+2=3k+2 là những số không chia hết cho 3
Nếu a=3k+1 thì a+1=3k+2 không chia hết cho 3 còn a+2=3k+3 chia hết cho 3
Nếu a=3k+2 thì a+2=3k+4 không chia hết cho 4, còn a+1=3k+3 chia hết cho 3
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
a, ta có a+(a+1)+(a+2)=3a+3=3(a+1) vậy tổng của 3 số tự nhiên liên tiếp phải chia hết cho 3
b, a+(a+1)+(a+2)+(a+3)=4a+4=4(a+1) vậy tổng của 4 số tự nhiên liên tiếp chia hết cho 4
c, a+(a+1)+(a+2)+(a+3)+(a+3)=5a+5=5(a+1) vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Số thứ 1:a
Số thứ 2:a+1
Số thứ 3:a+2
Ta có:a+(a+1)+(a+2)=a+a+1+a+2=3a+3 vì 3chia hết cho 3=>3a chia hết cho 3=>a+(a+1)+(a+2) chia hết cho 3
cn lại tự lm nha
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
gấp lắm!!!!!!!
a, ta có 5 stn liên tiếp có dạng 5x ; 5x+1 ; 5x+2 ; 5x+3 ; 5x+4 suy ra tổng trên có dạng 25x + 10 = 5 ( 5x + 2 ) chia hết cho 5 \(\Rightarrow\)đều phải cm
b ta có 3 stn liên tiếp có dạng x ; x+1 ; x+2 => tích có dạng )\(x\left(x=1\right)\left(x+2\right)\)thì 1 nếu\(x:3\) dư 1 = > x+2 chia hết cho 3 . th2 \(x:3\)dư \(\Rightarrow x+1\)chia hết cho 3 Nên cả 2 th đều chia hết \(\Rightarrow\) đều phải chứng minh