K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

số cách chọn 8 học sinh ừ 18 học sinh là :\(C^8_{18}\)

các TH:

thuộc 2 khối 10 và 11: \(C^8_{11}\)

thuộc 2 khói 11 và 12: \(C^8_{13}\)

thuộc 2 khối 13 và 10: \(C^8_{12}\)

=> số cách chọn theo đề là : 414811

22 tháng 5 2018

Đáp án C.

 

Mỗi mặt sẽ có 4 phần thuộc hình chỉ được tô một lần tức là mỗi mặt sẽ sinh ra 4 hình lập phương thỏa mãn yêu cầu bài toán, ta có 6 mặt, từ đó ta có 24 hình thỏa mãn yêu cầu.

W94PO2hiJi9M.png

24 tháng 8 2016

chọn 5 đội trong 12 đội có \(C^5_{12}=792\) cách

=> \(n\left(\Omega\right)=792\) 

Gọi A:" 5 đội được chọn có ít nhất 1 đội cờ đỏ khối 10 và ít nhất 1 đội cờ đỏ khối 11 " 

+) 1 đội K10 +4 đội K11 => có \(C^1_5.C^4_7=175\) cách 

+) 2 đội K10 +3 đội K11 => có \(C^2_5.C^3_7=350\)cách  

+) 3 đội k10 + 2 đội k11 => có \(C^3_5.C^2_7=210\) cách 

+) 4 độ k10 + 1 đội k11 => có \(C^4_5.C^1_7=35\)cách 

=> n(A) = 175+350+210+35 = 770 

=> P(A) = 770/792=35/36 

23 tháng 12 2019

16 tháng 12 2019

Đáp án D

Tổng số cách chọn 8 em từ đội 18 người là tUWPgxywIzS7.png 

Số cách chọn 8 em từ khối 12 và khối 11 là DycLqkhxh8N3.png

Số cách chọn 8 em từ khối 11 và khối 10 là e9m6li6ERnkE.png

Số cách chọn 8 em từ khối 10 và khối 12 là OsJOO5eaALdg.png

Vậy số cách chọn để có các em ở cả 3 khối là

bliKgd7EReuj.png

11 tháng 7 2017

Chọn D

Gọi A là biến cố “Học sinh nhận được 6 điểm”.

Xác suất đánh đúng 1 câu là 1 4 và đánh sai 1 câu là 3 4 .

Để nhận được 6 điểm học sinh đó cần đánh đúng 12 câu và sai 8 câu.

18 tháng 9 2018

10 tháng 4 2017

Trong mỗi khối, XS hs trượt Toán là 0,25; trượt Lý là 0,15; trượt cả 2 môn là 0,1; trượt đúng 1 môn là 0,2; chỉ trượt Toán là 0,15; chỉ trượt Lý là 0,05; trượt ít nhất 1 môn là 0,3; ko trượt môn nào là 0,7
a) P = 0,25^2 = 0,0625
b) Câu này đề chưa rõ ràng, có nhiều cách hiểu
..1) 2 hs đó đều bị trượt ít nhất 1 môn
..2) 2 hs đó cùng bị trượt trong 1 môn nào đó (còn môn kia không trượt)
..3) 2 hs đó cùng bị trượt trong 1 môn nào đó (còn môn kia có thể trượt hoặc không)
..Nếu hiểu theo cách 1 thì P = 0,3^2 = 0,09
..Nếu hiểu theo cách 2 thì P = 0,15^2 + 0,05^2 = 0,025
..Nếu hiểu theo cách 3 thì P = 0,25^2 + 0,15^2 - 0,1^2 = 0,075

c) P = 0,7^2 = 0,49

d) Trường hợp này là biến cố đối lập với biến cố c
..P = 1 - 0,7^2 = 0,51

22 tháng 8 2020

bạn chép mạng nhe

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 13 quả bóng có \({C}_{13}^3 = 286\) cách.

\( \Rightarrow n\left( \Omega \right) = 286\)

a) Gọi \(A\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu xanh”, \(B\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu đỏ”, \(C\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu vàng”

Vậy \(A \cup B \cup C\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu”

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^3 = 10\) cách.

\( \Rightarrow n\left( A \right) = 10 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}} = \frac{{10}}{{286}} = \frac{5}{{143}}\)

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^3 = 20\) cách.

\( \Rightarrow n\left( B \right) = 20 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{20}}{{286}} = \frac{{10}}{{143}}\)

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 2 quả bóng vàng có 0 cách.

\( \Rightarrow n\left( C \right) = 0 \Rightarrow P\left( C \right) = 0\)

\( \Rightarrow P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) = \frac{{15}}{{243}}\)

b) Gọi \(D\) là biến cố “Có đúng 2 quả bóng xanh trong 3 quả bóng lấy ra”

Vậy \(A \cup D\) là biến cố “Có ít nhất 2 quả bóng xanh trong 3 quả bóng lấy ra”

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^2 = 10\) cách.

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 8 quả bóng đỏ hoặc vàng có \({C}_8^1 = 8\) cách.

\( \Rightarrow n\left( D \right) = 10.8 = 80 \Rightarrow P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{80}}{{286}} = \frac{{40}}{{143}} \Rightarrow P\left( {A \cup D} \right) = P\left( A \right) + P\left( D \right) = \frac{{45}}{{143}}\)