Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
- Động lượng của hệ trước va chạm: \({p_{tr}} = m.{v_A} = m.v\)
- Động lượng của hệ sau va chạm: \({p_s} = m.v_A' + m.v_B' = m.(v_A' + v_B') = m.\left( {\frac{v}{2} + \frac{v}{2}} \right) = m.v\)
- Động năng của hệ trước va chạm: \({W_{tr}} = \frac{1}{2}.m.v_A^2 = \frac{1}{2}.m.{v^2}\)
- Động năng của hệ sau va chạm: \({W_s} = \frac{1}{2}.m.v_A^{'2} + \frac{1}{2}.m.v_B^{'2} = \frac{1}{2}.m.\left( {\frac{{{v^2}}}{4} + \frac{{{v^2}}}{4}} \right) = \frac{1}{4}.m.{v^2}\)
2.
Từ kết quả câu 1, ta thấy trong va chạm mềm thì động lượng không thay đổi (được bảo toàn), động năng thay đổi (năng lượng không được bảo toàn).
+ Lần đo 1: \(\frac{{\left| {{p_1} - p'} \right|}}{{{p_1}}}.100\% = \frac{{\left| {0,230 - 0,222} \right|}}{{0,230}}.100\% = 3,48\% \)
+ Lần đo 2: \(\frac{{\left| {{p_1} - p'} \right|}}{{{p_1}}}.100\% = \frac{{\left| {0,240 - 0,231} \right|}}{{0,240}}.100\% = 3,75\% \)
+ Lần đo 3: \(\frac{{\left| {{p_1} - p'} \right|}}{{{p_1}}}.100\% = \frac{{\left| {0,240 - 0,245} \right|}}{{0,240}}.100\% = 2,08\% \)
=> Động lượng trước và sau va chạm gần như nhau.
Chọn chiều dương là chiều từ trái sang phải
+ Trước khi va chạm: v1 = 2 m/s; v2 = 3 m/s
=> Động lượng của vật trước va chạm: p = m.v1 – m.v2 = m.(v1 – v2 ) = 1.(-1) = -1 (kg.m/s)
+ Sau va chạm: \(v_1' = 2\) m/s; \(v_2' = 1\) m/s
=> Động lượng của vật sau va chạm: \(p = m.( - v_1' + v_2') = 1.( - 1) = - 1(kg.m/s)\)
=> Động lượng trước va chạm = Động lượng sau va chạm
=> Kết luận: Trong quá trình chuyển động của vật, động lượng được bảo toàn
1,
Học sinh làm thí nghiệm và so sánh kết quả.
2,
Đề xuất phương án thí nghiệm
Sử dụng điện thoại thông minh và phần mềm phân tích video để xác định được vận tốc và động lượng trước và sau va chạm của hai xe có khối lượng xác định.
a)
- a phụ thuộc vào F (m + M = 0, 5kg)
Ta có:
+ Khi F = 1 N, a = 1,99 m/s2 thì \(\frac{F}{a} = \frac{1}{{1,99}} \approx 0,5\)
+ Khi F = 2 N, a = 4,03 m/s2 thì \(\frac{F}{a} = \frac{2}{{4,03}} \approx 0,5\)
+ Khi F = 3 N, a = 5,67 m/s2 thì \(\frac{F}{a} = \frac{3}{{5,67}} \approx 0,5\)
=> Tỉ số \(\frac{F}{a}\) không đổi nên đồ thị sự phụ thuộc của gia tốc a vào F là một đường thẳng
- a phụ thuộc vào \(\frac{1}{{m + M}}\) (ứng với F = 1 N)
Ta có:
+ Khi a = 3,31 m/s2 , \(\frac{1}{{M + m}} = \frac{{10}}{3}\) thì a. (M + m) = 1
+ Khi a = 2,44 m/s2 , \(\frac{1}{{M + m}} = 2,5\) thì a. (M + m) = 1
+ Khi a = 1,99 m/s2 , \(\frac{1}{{M + m}} = 2\) thì a. (M + m) = 1
=> Tỉ số \(\frac{a}{{\frac{1}{{M + m}}}} = a.(M + m)\) không đổi nên đồ thị sự phụ thuộc của gia tốc a vào \(\frac{1}{{M + m}}\) là một đường thẳng.
b) Ta có:
+ Khi (m + M) không đổi, F tăng thì a cũng tăng => Gia tốc a tỉ lệ thuận với lực F
+ Khi F không đổi, a giảm thì (m+M) tăng => Gia tốc a tỉ lệ nghịch với khối lượng
=> Kết luận: Gia tốc tỉ lệ thuận với lực tác dụng và tỉ lệ nghịch với khối lượng.
Khi xe mô tô đua vào khúc cua thì bộ phận của xe chuyển động tròn là: bánh xe.
Theo em, có thể có 30 phần trăm động năng của thác nước được nhà máy thủy điện chuyển hóa thành điện năng.
Cũng tùy thuộc vào công suất của từng nhà máy.
Lực đẩy của người bố trong hình có tác dụng như lực đẩy của hai anh em vì người bố khỏe, lực đẩy của bố bằng tổng lực đẩy của hai anh em cộng lại.
1.
- Động lượng của hệ trước va chạm: \({p_{tr}} = m.{v_A} = m.v\)
- Động lượng của hệ sau va chạm: \({p_s} = m.v_B' = m.v\)
- Động năng của hệ trước va chạm: \({W_{tr}} = \frac{1}{2}.m.v_A^2 = \frac{1}{2}.m.{v^2}\)
- Động năng của hệ sau va chạm: \({W_s} = \frac{1}{2}.m.v_B^{'2} = \frac{1}{2}.m.{v^2}\)
2.
Từ kết quả tính được, ta thấy trong va chạm đàn hồi, động lượng được bảo toàn, năng lượng được bảo toàn.