K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

\(PT\Leftrightarrow\left(\left(3x+2\right)+\left(3x+3\right)\right)^2\left(3x+2\right)\left(3x+3\right)=105\)

Đặt 3x+2=a suy ra\(\left(2a+1\right)^2a\left(a+1\right)=105\)

Đến đây giải bt,tìm đc a =>x.(tick nha)

NV
12 tháng 10 2020

1.

\(A=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{6+2\sqrt{5}}}}{\sqrt{6-2\sqrt{5}}+2}=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)

\(=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{5}-4}}{\sqrt{5}-1+2}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}\)

b. Thôi nhìn biến đổi khủng thế này thì nhường bạn :))

2.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng tính chẵn lẻ

\(\Rightarrow\) có ít nhất một trong 3 hiệu \(a-b\) ; \(a-c\) ; \(b-c\) là chẵn

\(\Rightarrow a+b+c\) chẵn

- Nếu a;b;c cùng số dư khi chia hết cho 3 thì \(a-b;a-c;b-c\) đều chia hết cho 3 \(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)⋮27\Rightarrow a+b+c⋮27\)

Mà 27 và 2 nguyên tố cùng nhau nên \(a+b+c⋮\left(27.2=54\right)\)

- Nếu a;b;c chia 3 ra 3 loại số dư khác nhau là 0;1;2 \(\Rightarrow a+b+c⋮3\)

Đồng thời cả \(a-b;b-c;c-a\) đều ko chia hết cho 3

\(\Rightarrow\) Không thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\)

- Nếu trong 3 số a;b;c có 2 số cùng số dư khi chia hết cho 3 và 1 số chia 3 khác số dư

\(\Rightarrow\) \(a+b+c⋮̸3\)

Trong khi đó ít nhất 1 trong 3 hiệu \(a-b;b-c;c-a\) sẽ có 1 giá trị chia hết cho 3 (do có 2 số cùng số dư khi chia 3)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) ko thỏa mãn

Vậy \(a+b+c⋮54\)

NV
12 tháng 10 2020

2b

Câu này đề có sai ko bạn? Trong căn là \(2\sqrt{x+4}\) thì còn có lý

Pt như nguyên mẫu được biến đổi thành:

\(\left(x^2+6x+9\right)+\left(x-4-2\sqrt{x-4}+1\right)+8=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{x-4}-1\right)^2+8=0\)

Hiển nhiên vô nghiệm

3.

\(\frac{a}{a+1}\ge1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Tương tự: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\) ; \(\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế với vế: \(\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\ge8\)

19 tháng 3 2020

đề bài sai rồi bạn nhé check lại đi 

20 tháng 3 2020

Sửa đề: \(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge\sqrt{2}\left(\Sigma\sqrt{\frac{1-a}{a}}\right)\)

or \(\Sigma\frac{b+c}{a}\ge\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\)

Theo AM-GM:\(\frac{b+c}{a}\ge2\sqrt{\frac{2\left(b+c\right)}{a}}-2\)

Tương tự và cộng lại: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-6\)

Mà: \(\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\ge3\sqrt[6]{\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge6\)

Từ đó: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}=VP\)

Done!

NV
12 tháng 10 2020

\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=9\)

\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)

\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)

\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)

\(B>2\left(\sqrt{36}-1\right)=10>9=A\)

\(\Rightarrow B>A\)

NV
12 tháng 10 2020

Để biểu thức B có nghĩa thì \(xy\ne0\)

Khi đó ta có:

\(x^3+y^3=2x^2y^2\)

\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)

\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ

12 tháng 8 2019

Nguyễn Bùi Đại Hiệp xem lại đề nhé bạn, dạng đề như này thì dữ kiện đầu phải là \(a+b+c=5\) nhé.

12 tháng 8 2019

Sửa đề : cho a,b,c là các số thực thỏa \(a+b+c=5\)\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Bài làm :

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=9\)

\(\Leftrightarrow5+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=9\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Khi đó : \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(=\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

Tương tự : \(\left\{{}\begin{matrix}b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\\c+2=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)\end{matrix}\right.\)

Ta có biến đổi của vế trái :

\(VT=\Sigma\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(VT=\Sigma\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(VT=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\left(\sqrt{b}+\sqrt{c}\right)^2\cdot\left(\sqrt{c}+\sqrt{a}\right)^2}}\)

\(VT=\frac{2\cdot2}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(VT=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=VP\) ( đpcm )

p/s: làm hơi tắt một chút, mong bạn thông cảm.

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)