Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2cos^22x+3sin^2x=2\)
\(\Leftrightarrow-2\left(1-cos^22x\right)+3sin^2x=0\)
\(\Leftrightarrow-2sin^2x+3sin^2x=0\)
\(\Leftrightarrow sin^2x=0\)
\(\Leftrightarrow x=k\pi\)
Nguyễn Thái Sơn
\(\Leftrightarrow-2sin^22x+3sin^2x=0\)
\(\Leftrightarrow-2sin^22x+3sin^2x=0\)
\(\Leftrightarrow4sin^2x.cos^2x-3sin^2x=0\)
\(\Leftrightarrow sin^2x.\left(4cos^2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2x=0\\cos^2x=\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\pm\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)
...
\(3cos^2x-2sinx+2=0\)
\(\Leftrightarrow-3\left(1-cos^2x\right)-2sinx+5=0\)
\(\Leftrightarrow3sin^2x+2sinx-5=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(3sinx+5\right)=0\)
\(\Leftrightarrow sinx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+10^0=x-20^0+k360^0\\4x+10^0=200^0-x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-30^0+k360^0\\5x=190^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-10^0+k120^0\\x=38^0+k72^0\end{matrix}\right.\) (\(k\in Z\))
a.
Đặt \(cos2x=t\Rightarrow t\in\left[-1;1\right]\)
Xét hàm \(y=f\left(t\right)=2t^2+2t-4\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=-\dfrac{1}{2}\in\left[-1;1\right]\)
\(f\left(-1\right)=-4\) ; \(f\left(-\dfrac{1}{2}\right)=-\dfrac{9}{2}\) ; \(f\left(1\right)=0\)
\(\Rightarrow y_{min}=-\dfrac{9}{2}\) khi \(t=-\dfrac{1}{2}\) hay \(cos2x=-\dfrac{1}{2}\)
\(y_{max}=0\) khi \(cos2x=1\)
b. Đặt \(tanx=t\Rightarrow t\in\left[-1;\sqrt{3}\right]\)
Xét hàm \(f\left(t\right)=t^2-2\sqrt{3}t-1\) trên \(\left[-1;\sqrt{3}\right]\)
\(-\dfrac{b}{2a}=\sqrt{3}\in\left[-1;\sqrt{3}\right]\)
\(f\left(-1\right)=2\sqrt{3}\) ; \(f\left(\sqrt{3}\right)=-4\)
\(y_{min}=-4\) khi \(x=\dfrac{\pi}{3}\) ; \(y_{max}=2\sqrt{3}\) khi \(x=-\dfrac{\pi}{4}\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\2x+\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{7\pi}{24}+k\pi\end{matrix}\right.\)
Lời giải:
$\cos 2x+\cos x+1=0$
$\Leftrightarrow 2\cos ^2x-1+\cos x+1=0$
$\Leftrightarrow 2\cos ^2x+\cos x=0$
$\Leftrightarrow \cos x(2\cos x+1)=0$
$\Leftrightarrow \cos x=0$ hoặc $\cos x=-\frac{1}{2}$
Nếu $\cos x=0$
$\Rightarrow x=\frac{\pi}{2}+k\pi$ với $k$ nguyên.
Nếu $\cos x=-\frac{1}{2}$
$\Leftrightarrow x=\frac{2}{3}\pi +2k\pi$ hoặc $x=-\frac{2}{3}\pi +2k\pi$ với $k$ nguyên bất kỳ.
\(\Leftrightarrow2cos^22x+3\left(\dfrac{1}{2}-\dfrac{1}{2}cos2x\right)=2\)
\(\Leftrightarrow4cos^22x-3cos2x-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=k2\pi\\2x=\pm arccos\left(-\dfrac{1}{4}\right)+k2\pi\\\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\dfrac{1}{2}arccos\left(-\dfrac{1}{4}\right)+k\pi\end{matrix}\right.\)