Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
=>\(25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔBAC có BM là phân giác
nên MA/AB=MC/BC
=>MA/3=MC/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)
=>MA=3cm
a)
Kẻ DH _I_ AB và DK _I_ AC.
\(\widehat{DHA}=\widehat{HAK}=\widehat{AKD}=90^0\)
=> AKDH là hình chữ nhật có AD là đường phân giác
=> AKDH là hình vuông
=> AK = KD = DH = HA
Tam giác KAD vuông cân tại A có:
\(AD=\sqrt{2}AK\)
\(\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AK}\left(1\right)\)
~*~*~*~*~
\(S_{DAB}+S_{DAC}=S_{ABC}\)
\(\Leftrightarrow\dfrac{1}{2}DH\times AB+\dfrac{1}{2}KD\times AC=\dfrac{1}{2}AB\times AC\)
\(\Leftrightarrow AK\times\left(AB+AC\right)=AB\times AC\)
\(\Leftrightarrow\dfrac{AB+AC}{AB\times AC}=\dfrac{1}{AK}\)
\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AK}\left(2\right)\)
~*~*~*~*~
(1) và (2) => đpcm
b)
Trên đoạn thẳng AB, lấy điểm E sao cho AD = AE.
AD là đường phân giác của tam giác ABC
\(\Rightarrow\widehat{DAB}=\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)
Tam giác ABC có AD là đường phân giác
=> \(\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}\) (tính chất của dãy tỉ số bằng nhau)
=> \(\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
Tam giác ADE có: AD = AE, \(\widehat{DAE}=60^0\)
=> Tam giác ADE đều
=> \(\widehat{EDA}=\widehat{DAC}\left(=60^0\right)\) mà chúng nằm ở vị trí so le trong
=> ED // AC
\(\Rightarrow\dfrac{ED}{AC}=\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow\dfrac{1}{AD}=\dfrac{AB+AC}{AB\times AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\left(\text{đ}pcm\right)\left(ED=AD\right)\)
a)
a)Kẻ DE ⊥ AB, DF ⊥ AC
Tứ giác AEDF có ∡FAE = ∡AED = 90 độ
⇒ Tứ giác AEDF là hình chữ nhật
Ta có: AD là tia phân giác ∡BAC hay ∡EAF
⇒ Tứ giác AEDF là hình vuông
⇒ DE = DF = AD/√2
ΔABC có AB//DF (cùng ⊥ với CA)
⇒ DF/DB = CD/BC
Tương tự: AC//DE ⇒ DE/AC = BD/BC
⇒ DF/AB + DE/AC = (CD+BD)/BD
⇔ AD/(AB√2) + AD/(AC√2) = BC/BC
⇔ 1/AB + 1/AC = √2/AD (đpcm)
Cau 1:
a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)
\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)
c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)
TH1: c>0
\(C=\dfrac{c+1}{c-1}\)
TH2: c<0
\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)
1) \(1019x^2+18y^4+1007z^2\)
\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)
\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)
1. đặt t = \(\sqrt{\dfrac{2x+2}{x+2}}\) \(\left(t\ge0\right)\) \(\Rightarrow\dfrac{1}{t}=\sqrt{\dfrac{x+2}{2x+2}}\)
ta có: \(t-\dfrac{1}{t}=\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{t^2-1}{t}=\dfrac{7}{12}\)
\(\Leftrightarrow12\left(t^2-1\right)=7t\)
\(\Leftrightarrow12t^2-7t-12=0\)
\(\Leftrightarrow\left(4t+3\right)\left(3t-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4t+3=0\\3t-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{3}{4}\left(L\right)\\t=\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\dfrac{2x+2}{x+2}}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{2x+2}{x+2}=\dfrac{16}{9}\)
\(\Leftrightarrow x=7\)
vậy x = 7 là nghiệm của pt
bài 1: đặt ẩn hoặc liên hợp. gợi ý :x=7
bài 2: tui làm r` mà quên link bn vào đây mà tìm nè Góc học tập của Ace Legona | Học trực tuyến