Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đúng
b)Đúng
c)Sai vì nghiệm không thỏa mãn ĐKXĐ
d)Sai vì có 1 nghiệm không thỏa mãn ĐKXĐ
a) 1x−3+3=x−32−x1x−3+3=x−32−x ĐKXĐ: x≠2x≠2
Khử mẫu ta được: 1+3(x−2)=−(x−3)⇔1+3x−6=−x+31+3(x−2)=−(x−3)⇔1+3x−6=−x+3
⇔3x+x=3+6−13x+x=3+6−1
⇔4x = 8
⇔x = 2.
x = 2 không thỏa ĐKXĐ.
Vậy phương trình vô nghiệm.
b) 2x−2x2x+3=4xx+3+272x−2x2x+3=4xx+3+27 ĐKXĐ:x≠−3x≠−3
Khử mẫu ta được:
14(x+3)−14x214(x+3)−14x2= 28x+2(x+3)28x+2(x+3)
⇔14x2+42x−14x2=28x+2x+6⇔14x2+42x−14x2=28x+2x+6
⇔
Lời giải:
a)
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^3(x-1)+3x^2(x-1)+8x(x-1)+12(x-1)=0\)
\(\Leftrightarrow (x-1)(x^3+3x^2+8x+12)=0\)
\(\Leftrightarrow (x-1)[x^2(x+2)+x(x+2)+6(x+2)]=0\)
\(\Leftrightarrow (x-1)(x+2)(x^2+x+6)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x^2+x+6=0\left(1\right)\end{matrix}\right.\)
Đối với (1): \(\Leftrightarrow (x+\frac{1}{2})^2+\frac{23}{4}=0\)
(vô lý vì \((x+\frac{1}{2})^2+\frac{23}{4}\geq \frac{23}{4}>0\) )
Do đó \(x\in\left\{-2;1\right\}\)
b) ĐKXĐ: ......
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}=\frac{1}{6}\)
\(\Leftrightarrow \frac{1}{(x+1)(x+3)}+\frac{1}{(x+3)(x+5)}=\frac{1}{6}\)
\(\Leftrightarrow \frac{(x+5)+(x+1)}{(x+1)(x+3)(x+5)}=\frac{1}{6}\)
\(\Leftrightarrow \frac{2(x+3)}{(x+1)(x+3)(x+5)}=\frac{1}{6}\Leftrightarrow \frac{2}{(x+1)(x+5)}=\frac{1}{6}\)
\(\Leftrightarrow (x+1)(x+5)=12\)
\(\Leftrightarrow x^2+6x-7=0\)
\(\Leftrightarrow (x-1)(x+7)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) (thỏa mãn đkxđ)
Vậy \(x\in\left\{-7;1\right\}\)
giải các phương trình sau:
a) 6x-3= 4x+5
b) \(\dfrac{2x+3}{x+1}\)- \(\dfrac{6}{x}\)= 2
c) \(|3x-1|\)=3x
a)\(6x-3=4x+5\)
\(\Rightarrow6x-3-4x-5=0\)
\(\Rightarrow2x-8=0\)
\(\Rightarrow x=4\)
Vậy x=4
b)\(\frac{2x+3}{x+1}-\frac{6}{x}=2\left(ĐKXĐ:x\ne-1;0\right)\)
\(\Rightarrow\frac{2x^2+3x}{x\left(x+1\right)}-\frac{6x+6}{x\left(x+1\right)}=2\)
\(\Rightarrow\frac{2x^2+3x-6x-6}{x\left(x+1\right)}=2\)
\(\Rightarrow2x^2-3x-6=2\left(x^2+x\right)\)
\(\Rightarrow2x^2-3x-6-2x^2-2x=0\)
\(\Rightarrow-5x-6=0\)
\(\Rightarrow x=-\frac{6}{5}\)
Vậy \(x=-\frac{6}{5}\)
c)\(\left|3x-1\right|=3x\left(1\right)\)
TH1:\(x\ge\frac{1}{3}\).PT(1) có dạng:3x-1=3x
0x=1
PT vô nghiệm
TH2:\(x< \frac{1}{3}\).PT(1) có dạng:1-3x=3x
\(\Rightarrow6x=1\)
\(\Rightarrow x=\frac{1}{6}\left(TM\right)\)
Vậy PT có nghiệm là \(\frac{1}{6}\)
a, \(6x-3=4x+5 \)
\(\Leftrightarrow6x-4x=5+3\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
vậy no của pt là : x = 4
b, \(\frac{2x+3}{x+1}-\frac{6}{x}=2\)
ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(\Leftrightarrow\frac{2x^2+3x-6x-6}{x\left(x+1\right)}=2\)
\(\Leftrightarrow\frac{2x^2-3x-6}{x\left(x+1\right)}=2\)
\(\Leftrightarrow2x^2-3x-6=2x^2+2x\)
\(\Leftrightarrow-5x=6\)
\(\Leftrightarrow x=\frac{-6}{5}\)
vậy no của pt là x=-6/5
c, \(\left|3x-1\right|=3x\)
Với \(3x-1\ge0\)
\(\Rightarrow3x-1=3x\Leftrightarrow-1=0\)( vô lí )
bài 1:
b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)
<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)
=>\(x^2+4x+4=x^2+5x+4+x^2\)
<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)
<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)
vậy...............
d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
vậy............
bài 3:
g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
=>\(4x-8-2x-2=x+3\)
<=>\(x=13\)
vậy..............
mấy ý khác bạn làm tương tụ nhé
chúc bạn học tốt ^ ^
1)\(-\dfrac{4x-3}{x-5}=\dfrac{29}{3}\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\Leftrightarrow9-12x=29x-145\)
\(\Leftrightarrow29x+12x=9+145\Leftrightarrow41x=154\Leftrightarrow x=\dfrac{154}{41}\)
2)\(\dfrac{2x-1}{5-3x}=2\Leftrightarrow2\left(2x-1\right)=5-3x\)
\(\Leftrightarrow4x-2=5-3x\)
\(\Leftrightarrow4x+3x=5+2\Leftrightarrow7x=7\Leftrightarrow x=1\)
3)\(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Rightarrow4x-5=2x-2+x\)
\(\Leftrightarrow4x-2x-x=-2+5\)
\(\Leftrightarrow x=3\)
\(1)-\dfrac{4x-3}{x-5}=\dfrac{29}{3} (x \neq 5) \\\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\) \(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\\\Leftrightarrow9-12x=29x-145\) \(\Leftrightarrow29x+12x=9+145\\\Leftrightarrow41x=154\\\Leftrightarrow x=\dfrac{154}{41}(TM)\)
Vậy \(S=\left\{\dfrac{154}{41}\right\}\)
\(2)\dfrac{2x-1}{5-3x}=2 (x \neq \dfrac{5}{3}) \)
\(\Leftrightarrow2x-1=2\left(5-3x\right)\\ \Leftrightarrow2x-1=10-6x\\ \Leftrightarrow2x+6x=10+1\\ \Leftrightarrow8x=11\\ \Leftrightarrow x=\dfrac{11}{8}\left(TM\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3)\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1} (x \neq 1) \\\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\) \(\Leftrightarrow4x-5=2x-2+x\) \(\Leftrightarrow4x-2x-x=-2+5\) \(\Leftrightarrow x=3(TM)\)
Vậy \(S=\left\{3\right\}\)