\(\dfrac{x}{2005}\)+ \(\dfrac{x-1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

\(\Leftrightarrow\dfrac{x}{2005}+1+\dfrac{x-1}{2006}+1=\dfrac{x-2}{2007}+1-1+1\)

\(\Leftrightarrow\dfrac{x+2005}{2005}+\dfrac{x+2005}{2006}=\dfrac{x+2005}{2007}\)

\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}\right)=0\)

\(\Leftrightarrow x+2005=0\) (vì \(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}\ne0\))

\(\Leftrightarrow x=-2005\)

24 tháng 1 2018

\(\dfrac{x}{2005}+\dfrac{x-1}{2006}=\dfrac{x-2}{2007}-1\)

\(\Leftrightarrow\dfrac{x+2005}{2005}+\dfrac{x+2005}{2006}-\dfrac{x+2005}{2007}=0\)

\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}\right)=0\)

\(\Leftrightarrow x=-2005\).

13 tháng 4 2018

\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)

\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)

\(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)

\(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)

\(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)

⇔ x+2009=0

⇔ x=-2009

vậy x=-2009 là nghiệm của pt

13 tháng 4 2018

a) ( x2 + x )2 + 4( x2 + x ) = 12

<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0

<=> ( x2 + x + 2)2 - 16 = 0

<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0

<=> ( x2 + x + 6 )( x2 + x - 2) = 0

Do : x2 + x + 6

= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\)\(\dfrac{23}{4}\) > 0 ∀x

=> x2 + x - 2 = 0

<=> x2 - x + 2x - 2 = 0

<=> x( x - 1) + 2( x - 1) = 0

<=> ( x - 1)( x + 2 ) = 0

<=> x = 1 hoặc : x = - 2

KL.....

b) Kuroba kaito làm rùi nhé hihi

17 tháng 4 2017

sai đề ko bn

13 tháng 2 2018

\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)

\(\Leftrightarrow\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)

\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)

\(\Rightarrow x+2010=0\)

\(\Rightarrow x=-2010\)

Vậy pt có nghiệm duy nhất \(x=-2010\)

14 tháng 3 2018

giải phương trình

x^2+x-2=0

vậy kết quả bằng mấy vậy

26 tháng 1 2019

\(\frac{x-3}{2011}+\frac{x-5}{2009}+\frac{x-7}{2007}+\frac{x-9}{2005}=4\)

\(\Leftrightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)+\left(\frac{x-9}{2005}-1\right)=0\)

\(\Leftrightarrow\frac{x-2014}{2011}+\frac{x-2014}{2009}+\frac{x-2014}{2007}+\frac{x-2014}{2005}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2009}+\frac{1}{2007}+\frac{1}{2005}\right)=0\)

                                    |________________A________________|

Do A > 0

nên x - 2014 = 0

<=> x = 2014

22 tháng 4 2017

a) ĐKXĐ: x # 1

Khử mẫu ta được: 2x - 1 + x - 1 = 1 ⇔ 3x = 3 ⇔ x = 1 không thoả mãn ĐKXĐ

Vậy phương trình vô nghiệm.

b) ĐKXĐ: x # -1

Khử mẫu ta được: 5x + 2x + 2 = -12

⇔ 7x = -14

⇔ x = -2

Vậy phương trình có nghiệm x = -2.

c) ĐKXĐ: x # 0.

Khử mẫu ta được: x3 + x = x4 + 1

⇔ x4 - x3 -x + 1 = 0

⇔ x3(x – 1) –(x – 1) = 0

⇔ (x3 -1)(x - 1) = 0

⇔ x3 -1 = 0 hoặc x - 1 = 0

1) x - 1 = 0 ⇔ x = 1

2) x3 -1 = 0 ⇔ (x - 1)(x2 + x + 1) = 0

⇔ x = 1 hoặc x2 + x + 1 = 0 ⇔ \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\) (vô lí)

Vậy phương trình có nghiệm duy nhất x = 1.

d) ĐKXĐ: x # 0 -1.

Khử mẫu ta được x(x + 3) + (x + 1)(x - 2) = 2x(x + 1)

⇔ x2 + 3x + x2 – 2x + x – 2 = 2x2 + 2x

⇔ 2x2 + 2x - 2 = 2x2 + 2x

⇔ 0x = 2

Phương trình 0x = 2 vô nghiệm.

Vậy phương trình đã cho vô nghiệm

29 tháng 1 2018

a)\(\dfrac{2x-1}{x-1}+\dfrac{x-1}{x-1}=\dfrac{1}{x-1}\)

=>2x-1 + x-1 =1

<=>2x +x=1+1+1

<=>3x=3

<=>x=1

vậy S= {1}

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}