\(\frac{\left|5-3x\right|-\left|x-1\right|}{x-3+\left|3+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)

Bien doi PT thanh \(a^2+4b^2=5ab\)

\(\Leftrightarrow a^2-5ab+4b^2=0\)

\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)

\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=65-x\)

\(\Leftrightarrow x=0\left(n\right)\)

\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=64.65-64x\)

\(\Leftrightarrow65x=64.65-65\)

\(\Leftrightarrow x=63\left(n\right)\)

Vay nghiem cua PT la \(x=0,x=63\)

30 tháng 8 2019

 a,

\(ĐKXĐ:x\ge\frac{1}{2}\)

Ta có: \(\sqrt{2x-1}+2=x\)

\(\Rightarrow\sqrt{2x-1}=x-2\)

\(\Rightarrow2x-1=x^2-4x+4\)

\(\Rightarrow6x-x^2-5=0\)

\(\Rightarrow x^2-6x+5=0\)

\(\Rightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)

30 tháng 8 2019

Ban Nguyen Van Tuan Anh phai danh gia 2 ve phuong trinh roi moi duoc binh phuong 2 ve len chu

Tuc la them dieu kien \(\sqrt{2x-1}=x-2\)

                                 <=>\(\hept{\begin{cases}x\ge2\\2x-1=x^2-4x+4\end{cases}}\)

T u do ta moi loai duoc TH x=1 khong thoa man roi moi ket luan PT co nghiem duy nhat x=5

15 tháng 6 2015

Câu a, đặt x+1/y=a;y+1/x=b. đề bài tương đương vs việc giải pt:

             a+b=9/2   (1)

             ab=9/2      (2)

lấy (1) bình phương lên, khai triển ra ( tự làm ) rồi trừ đi 4 lần (2), ta được a^2-2ab+b^2=9/4

<=> (a-b)^2=9/4

<=> a-b= +- 3/4 (đã có tổng và đã có hiệu, giải như bài toán cấp 1 thui)

tìm đc a,b rùi thì tìm đc x và y dễ như bỡn!

Câu b, ( giải chi tiết hơn): 

     gọi 2 pt lần lượt là (1) và (2) nha

Nhận xét: nếu x=y thay vào (1) ta đc pt vô nghiệm => x khác y => x-y khác 0

Nhân (1) với (x-y), ta đc x^3-y^3=7(x-y)      (4)

Nhận xét: Nếu x^2=y^2 thay vào (2) ta đc pt vô nghiệm => x^2 khác y^2 => x^2-y^2 khác 0

Nhân (2) với (x^2-y^2), ta đc x^6-y^6=21(x^2-y^2)

<=> (x^3-y^3)(x^3+y^3)=21(x+y)(x-y)    (5)

thế (4) vào (5), ta rút gọn 2 bên  với 7(x-y), còn lại đc: (x+y)(x^2-xy+y^2)=3(x+y)

<=> x^2-xy+y^2=3  (6)

cộng (1) với (6) lại rùi chia mỗi vế đi 2, ta đc x^2+y^2=5

trừ (1) với (6), ta được xy=2

Từ 2 cái trên cộng rùi trừ vs nhau, viết thành hàng đẳng thức rùi khai căn ra luôn x và y, chúc bạn học tốt ^^

 

20 tháng 10 2020

Check lại đề phát bạn.

19 tháng 9 2020

a) \(ĐKXĐ:x,y\ne0;x\ne\pm y\)

Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x+y\right)^2}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{x^2.\left(x^2-y^2\right)}{\left(x^2-y^2\right).\left(x^2-y^2\right)}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x^2+2xy+y^2\right)-2x^2y-x^2.\left(x^2-y^2\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{x^2y^2+y^4+2xy^3-2x^2y-x^4+x^2y^2}{\left(x-y\right)^2\left(x+y\right)^2}\right]\)

Đề này lỗi mình nghĩ vậy vì trên tử kia không đẹp lắm.....