Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)
Bien doi PT thanh \(a^2+4b^2=5ab\)
\(\Leftrightarrow a^2-5ab+4b^2=0\)
\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)
\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)
\(\Leftrightarrow65+x=65-x\)
\(\Leftrightarrow x=0\left(n\right)\)
\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)
\(\Leftrightarrow65+x=64.65-64x\)
\(\Leftrightarrow65x=64.65-65\)
\(\Leftrightarrow x=63\left(n\right)\)
Vay nghiem cua PT la \(x=0,x=63\)
a,
\(ĐKXĐ:x\ge\frac{1}{2}\)
Ta có: \(\sqrt{2x-1}+2=x\)
\(\Rightarrow\sqrt{2x-1}=x-2\)
\(\Rightarrow2x-1=x^2-4x+4\)
\(\Rightarrow6x-x^2-5=0\)
\(\Rightarrow x^2-6x+5=0\)
\(\Rightarrow\left(x-3\right)^2=4\)
\(\Rightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
Ban Nguyen Van Tuan Anh phai danh gia 2 ve phuong trinh roi moi duoc binh phuong 2 ve len chu
Tuc la them dieu kien \(\sqrt{2x-1}=x-2\)
<=>\(\hept{\begin{cases}x\ge2\\2x-1=x^2-4x+4\end{cases}}\)
T u do ta moi loai duoc TH x=1 khong thoa man roi moi ket luan PT co nghiem duy nhat x=5
Câu a, đặt x+1/y=a;y+1/x=b. đề bài tương đương vs việc giải pt:
a+b=9/2 (1)
ab=9/2 (2)
lấy (1) bình phương lên, khai triển ra ( tự làm ) rồi trừ đi 4 lần (2), ta được a^2-2ab+b^2=9/4
<=> (a-b)^2=9/4
<=> a-b= +- 3/4 (đã có tổng và đã có hiệu, giải như bài toán cấp 1 thui)
tìm đc a,b rùi thì tìm đc x và y dễ như bỡn!
Câu b, ( giải chi tiết hơn):
gọi 2 pt lần lượt là (1) và (2) nha
Nhận xét: nếu x=y thay vào (1) ta đc pt vô nghiệm => x khác y => x-y khác 0
Nhân (1) với (x-y), ta đc x^3-y^3=7(x-y) (4)
Nhận xét: Nếu x^2=y^2 thay vào (2) ta đc pt vô nghiệm => x^2 khác y^2 => x^2-y^2 khác 0
Nhân (2) với (x^2-y^2), ta đc x^6-y^6=21(x^2-y^2)
<=> (x^3-y^3)(x^3+y^3)=21(x+y)(x-y) (5)
thế (4) vào (5), ta rút gọn 2 bên với 7(x-y), còn lại đc: (x+y)(x^2-xy+y^2)=3(x+y)
<=> x^2-xy+y^2=3 (6)
cộng (1) với (6) lại rùi chia mỗi vế đi 2, ta đc x^2+y^2=5
trừ (1) với (6), ta được xy=2
Từ 2 cái trên cộng rùi trừ vs nhau, viết thành hàng đẳng thức rùi khai căn ra luôn x và y, chúc bạn học tốt ^^
a) \(ĐKXĐ:x,y\ne0;x\ne\pm y\)
Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x+y\right)^2}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{x^2.\left(x^2-y^2\right)}{\left(x^2-y^2\right).\left(x^2-y^2\right)}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x^2+2xy+y^2\right)-2x^2y-x^2.\left(x^2-y^2\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{x^2y^2+y^4+2xy^3-2x^2y-x^4+x^2y^2}{\left(x-y\right)^2\left(x+y\right)^2}\right]\)
Đề này lỗi mình nghĩ vậy vì trên tử kia không đẹp lắm.....