Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)
Khi đó phương trình trở thành:
\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)
Tick plz
\(\dfrac{\sqrt{x-2015}-1}{x-2015}+\dfrac{\sqrt{y-2016}-1}{y-2016}=\dfrac{1}{2}\)
Điều kiện \(\left\{{}\begin{matrix}x>2015\\y>2016\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x-2015}}-\dfrac{1}{x-2015}+\dfrac{1}{\sqrt{y-2016}}-\dfrac{1}{y-2016}=\dfrac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=a>0\\\dfrac{1}{\sqrt{y-2016}}=b>0\end{matrix}\right.\) thì ta có:
\(a-a^2+b-b^2=\dfrac{1}{2}\)
\(\Leftrightarrow\left(2a^2-2a+\dfrac{1}{2}\right)+\left(2b^2-2b+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}a-\dfrac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2}b-\dfrac{1}{\sqrt{2}}\right)^2=0\)
\(\Leftrightarrow a=b=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=\dfrac{1}{4}\\\dfrac{1}{\sqrt{y-2016}}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2019\\y=2020\end{matrix}\right.\)
=>|x-1|+|x-2|=2016
TH1: x<1
Pt sẽ là 1-x+2-x=2016
=>-2x+3=2016
=>-2x=2013
=>x=-2013/2(nhận)
TH2: 1<=x<2
Pt sẽ là x-1+2-x=2016
=>1=2016(loại)
TH3: x>=2
Pt sẽ là 2x-3=2016
=>2x=2019
=>x=2019/2(nhận)
\(\left\{{}\begin{matrix}\dfrac{5}{y}-\dfrac{7}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}-\dfrac{9}{-\dfrac{2}{9}}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}=-\dfrac{11}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\x=-\dfrac{8}{11}\end{matrix}\right.\)
Vậy....
\([\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y]:\left(\sqrt{y}-2\right)\)
ĐK: x,y>0
\(\left[\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{\sqrt{x}^2+2\sqrt{xy}+\sqrt{y}^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y\right]:\left(\sqrt{y}-2\right)\)
\(\Leftrightarrow\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\sqrt{x}^2-2\sqrt{xy}+\sqrt{y}^2}{\sqrt{x}-\sqrt{y}}-y\right]:\left(\sqrt{y}-2\right)\)
\(\Leftrightarrow\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y\right]:\left(\sqrt{y}-2\right)\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-y\right):\left(\sqrt{y}-2\right)\)
\(\Leftrightarrow\left(2\sqrt{y}-y\right).\dfrac{1}{\sqrt{y}-2}\)
\(\Leftrightarrow\sqrt{y}\left(2-\sqrt{y}\right).\dfrac{1}{\sqrt{y}-2}\)
\(\Leftrightarrow-\sqrt{y}\left(\sqrt{y}-2\right).\dfrac{1}{\sqrt{y}-2}\)
\(\Leftrightarrow-\sqrt{y}\)
=>16x+9y=840 và 210/x-210/y=7/4
=>16x=840-9y và 30/x-30/y=1/4
=>x=-9/16y+52,5 và (30y-30x)=xy/4
=>xy=120y-120x
=>y(-9/16y+52,5)=120y-120(-9/16y+52,5)
=>-9/16y^2+52,5y-120y+120(-9/16y+52,5)=0
=>-9/16y^2-67,5y-67,5y+6300=0
=>y=40 hoặc y=-280
=>x=30 hoặc x=210