K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

`a,3x^2+7x+2=0`

`<=>3x^2+6x+x+2=0`

`<=>3x(x+2)+x+2=0`

`<=>(x+2)(3x+1)=0`

`<=>x=-2\or\x=-1/3`

 

d) Ta có: (x-1)(x+2)=70

\(\Leftrightarrow x^2+2x-x-2-70=0\)

\(\Leftrightarrow x^2+x-72=0\)

\(\Leftrightarrow x^2+9x-8x-72=0\)

\(\Leftrightarrow x\left(x+9\right)-8\left(x+9\right)=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=8\end{matrix}\right.\)

Vậy: S={8;-9}

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)

Do đó: Phươbg trình vô nghiệm

b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)

Do đó: Phương trình vô nghiệm

c: \(\Leftrightarrow x^2-4x+4-3=0\)

\(\Leftrightarrow\left(x-2\right)^2=3\)

hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

d: \(\Leftrightarrow3x^2+6x+x+2=0\)

=>(x+2)(3x+1)=0

=>x=-2 hoặc x=-1/3

4 tháng 4 2017

a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:

3t2 – 2t – 1 = 0; t1 = 1, t2 =

Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5

x1 = , x2 =

Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:

Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0

Giải ra ta được t1 = 2, t2 = -3.

- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.

- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.

Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.

c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0

Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7

Với t = 7, ta có: √x = 7. Suy ra x = 49.

Vậy phương trình đã cho có một nghiệm: x = 49

d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0

Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0

hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.

- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =

- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =



AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 1:

PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)

\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)

Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)

\(PT\Leftrightarrow a^2+2b-4=ba\)

\(\Leftrightarrow (a^2-4)-b(a-2)=0\)

\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)

Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)

Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)

\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)

\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 2:

ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)

Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)

Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)

\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)

Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)

Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)

Vậy...........

3 tháng 9 2017

a) CĂN ký hiệu =v nhé

8 = 2.22 ; x2 -4xy + (2y)2 = (x-2y)2

=> A = 2v2/(x-2y)

b;c tương tự

AH
Akai Haruma
Giáo viên
1 tháng 3 2019

Lời giải:

a)

\(3x^2-5x+1=2x-3\)

\(\Leftrightarrow 3x^2-5x+1-2x+3=0\)

\(\Leftrightarrow 3x^2-7x+4=0\) (\(a=3; b=-7; c=4)\)

b)

\(\frac{3}{5}x^2-4x-3=3x+\frac{1}{3}\)

\(\Leftrightarrow \frac{3}{5}x^2-4x-3-3x-\frac{1}{3}=0\)

\(\Leftrightarrow \frac{3}{5}x^2-7x-\frac{10}{3}=0(a=\frac{3}{5};b=-7; c=\frac{-10}{3})\)

c)

\(\Leftrightarrow -\sqrt{3}x^2+x-5-\sqrt{3}x-\sqrt{2}=0\)

\(\Leftrightarrow -\sqrt{3}x^2+(1-\sqrt{3})x-(5+\sqrt{2})=0\)

(\(a=-\sqrt{3}; b=1-\sqrt{3}; c=-(5+\sqrt{2}))\)

d)

\(\Leftrightarrow x^2-5(m+1)x+m^2-2=0\)

(\(a=1;b=-5(m+1); c=m^2-2)\)

18 tháng 2 2019

1. Giải phương trình, hệ phương trình:

a) 2x2 - 5x + 3 = 0

\(\Leftrightarrow2x^2-2x-3x+3=0\)

\(\Leftrightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) x2 - 3x = 0

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}2\left(x+1\right)-5\left(y+1\right)=5\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6\left(x+1\right)-15\left(y+1\right)=15\\6\left(x+1\right)-4\left(y+1\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-11\left(y+1\right)=13\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=\dfrac{-13}{11}\\3\left(x+1\right)-2.\left(-\dfrac{13}{11}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\3\left(x+1\right)=-\dfrac{15}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\x=-\dfrac{16}{11}\end{matrix}\right.\)

Hix ,mệt quá.

18 tháng 2 2019

\(d,\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{163}{y}=-489\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\\dfrac{60}{x}+405=525\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

a: Vì 7-9+2=0 nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{2}{7}\end{matrix}\right.\)

b: Vì 23-(-9)-32=0 nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{32}{23}\end{matrix}\right.\)

c: Vì \(1975+4-1979=0\)

nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=-\dfrac{1979}{1975}\end{matrix}\right.\)

d: Vì \(5+\sqrt{2}+5-\sqrt{2}-10=0\)

nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{-10}{5+\sqrt{2}}\end{matrix}\right.\)

e: Vì \(\dfrac{1}{3}-\left(-\dfrac{3}{2}\right)-\dfrac{11}{6}=0\)

nên pt có hai nghiệm là: 

\(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{11}{6}:\dfrac{1}{3}=\dfrac{11}{6}\cdot3=\dfrac{11}{2}\end{matrix}\right.\)

f: Vì 31,1-50,9+19,8=0 nên phương trình có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{198}{311}\end{matrix}\right.\)